Mostrar el registro sencillo del ítem
dc.contributor.author | Agud Albesa, Lucia | es_ES |
dc.contributor.author | Calabuig, J. M. | es_ES |
dc.contributor.author | Juan, Maria Aranzazu | es_ES |
dc.contributor.author | Sánchez Pérez, Enrique Alfonso | es_ES |
dc.date.accessioned | 2021-09-11T03:31:09Z | |
dc.date.available | 2021-09-11T03:31:09Z | |
dc.date.issued | 2020-01 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/172140 | |
dc.description.abstract | [EN] Let (Omega,sigma,mu) be a finite measure space and consider a Banach function space Y(mu). We say that a Banach space E is representable by Y(mu) if there is a continuous bijection I:Y(mu)-> E. In this case, it is possible to define an order and, consequently, a lattice structure for E in such a way that we can identify it as a Banach function space, at least regarding some local properties. General and concrete applications are shown, including the study of the notion of the pth power of a Banach space, the characterization of spaces of operators that are isomorphic to Banach lattices of multiplication operators, and the representation of certain spaces of homogeneous polynomials on Banach spaces as operators acting in function spaces. | es_ES |
dc.description.sponsorship | The authors would like to thank the referees for their valuable comments, which helped to improve the manuscript. The work of the second author was supported by the Ministerio de Ciencia e Innovacion, Agencia Estatal del Investigacion (Spain) and FEDER under project #PGC2018-095366-B-100. The work of the fourth author was supported by the Ministerio de Ciencia e Innovacion, Agencia Estatal del Investigacion (Spain) and FEDER under project #MTM2016 77054-C2-1-P. We did not receive any funds for covering the costs of publishing in open access. | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | MDPI AG | es_ES |
dc.relation.ispartof | Mathematics | es_ES |
dc.rights | Reconocimiento (by) | es_ES |
dc.subject | Banach function space | es_ES |
dc.subject | Concavification | es_ES |
dc.subject | Local theory | es_ES |
dc.subject | Banach space | es_ES |
dc.subject | Strongly p-integral operator | es_ES |
dc.subject | Pth power | es_ES |
dc.subject.classification | MATEMATICA APLICADA | es_ES |
dc.title | Banach Lattice Structures and Concavifications in Banach Spaces | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.3390/math8010127 | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/PGC2018-095366-B-I00/ES/ANALISIS VECTORIAL, MULTILINEAL Y APROXIMACION/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MINECO//MTM2016-77054-C2-1-P/ES/ANALISIS NO LINEAL, INTEGRACION VECTORIAL Y APLICACIONES EN CIENCIAS DE LA INFORMACION/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Matemática Aplicada - Departament de Matemàtica Aplicada | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Instituto Universitario de Matemática Pura y Aplicada - Institut Universitari de Matemàtica Pura i Aplicada | es_ES |
dc.description.bibliographicCitation | Agud Albesa, L.; Calabuig, JM.; Juan, MA.; Sánchez Pérez, EA. (2020). Banach Lattice Structures and Concavifications in Banach Spaces. Mathematics. 8(1):1-20. https://doi.org/10.3390/math8010127 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.3390/math8010127 | es_ES |
dc.description.upvformatpinicio | 1 | es_ES |
dc.description.upvformatpfin | 20 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 8 | es_ES |
dc.description.issue | 1 | es_ES |
dc.identifier.eissn | 2227-7390 | es_ES |
dc.relation.pasarela | S\400580 | es_ES |
dc.contributor.funder | Agencia Estatal de Investigación | es_ES |
dc.contributor.funder | European Regional Development Fund | es_ES |
dc.contributor.funder | Ministerio de Economía y Competitividad | es_ES |
dc.description.references | Bu, Q., Buskes, G., Popov, A. I., Tcaciuc, A., & Troitsky, V. G. (2012). The 2-concavification of a Banach lattice equals the diagonal of the Fremlin tensor square. Positivity, 17(2), 283-298. doi:10.1007/s11117-012-0166-8 | es_ES |
dc.description.references | Buskes, G., & van Rooij, A. (2001). Squares of Riesz Spaces. Rocky Mountain Journal of Mathematics, 31(1). doi:10.1216/rmjm/1008959667 | es_ES |
dc.description.references | Troitsky, V. G., & Zabeti, O. (2013). Fremlin tensor products of concavifications of Banach lattices. Positivity, 18(1), 191-200. doi:10.1007/s11117-013-0239-3 | es_ES |
dc.description.references | Defant, A. (2001). Positivity, 5(2), 153-175. doi:10.1023/a:1011466509838 | es_ES |
dc.description.references | Defant, A., & Sánchez Pérez, E. A. (2004). Maurey–Rosenthal factorization of positive operators and convexity. Journal of Mathematical Analysis and Applications, 297(2), 771-790. doi:10.1016/j.jmaa.2004.04.047 | es_ES |
dc.description.references | Berezhnoĭ, E. I., & Maligranda, L. (2005). Representation of Banach Ideal Spaces and Factorization of Operators. Canadian Journal of Mathematics, 57(5), 897-940. doi:10.4153/cjm-2005-035-0 | es_ES |
dc.description.references | Reisner, S. (1981). A factorization theorem in Banach lattices and its application to Lorentz spaces. Annales de l’institut Fourier, 31(1), 239-255. doi:10.5802/aif.825 | es_ES |
dc.description.references | Curbera, G. P. (1992). Operators intoL 1 of a vector measure and applications to Banach lattices. Mathematische Annalen, 293(1), 317-330. doi:10.1007/bf01444717 | es_ES |
dc.description.references | Curbera, G. P., Okada, S., & Ricker, W. J. (2019). Extension and integral representation of the finite Hilbert transform in rearrangement invariant spaces. Quaestiones Mathematicae, 43(5-6), 783-812. doi:10.2989/16073606.2019.1605423 | es_ES |
dc.description.references | Delgado, O., & Soria, J. (2007). Optimal domain for the Hardy operator. Journal of Functional Analysis, 244(1), 119-133. doi:10.1016/j.jfa.2006.12.011 | es_ES |
dc.description.references | Bravo, O. G. (2016). On the Optimal Domain of the Laplace Transform. Bulletin of the Malaysian Mathematical Sciences Society, 40(1), 389-408. doi:10.1007/s40840-016-0402-7 | es_ES |
dc.description.references | Mockenhaupt, G., & Ricker, W. J. (2008). Optimal extension of the Hausdorff-Young inequality. Journal für die reine und angewandte Mathematik (Crelles Journal), 2008(620). doi:10.1515/crelle.2008.054 | es_ES |
dc.description.references | Leśnik, K., & Tomaszewski, J. (2017). Pointwise mutipliers of Orlicz function spaces and factorization. Positivity, 21(4), 1563-1573. doi:10.1007/s11117-017-0485-x | es_ES |
dc.description.references | De Jager, P., & Labuschagne, L. E. (2019). Multiplication operators on non-commutative spaces. Journal of Mathematical Analysis and Applications, 475(1), 874-894. doi:10.1016/j.jmaa.2019.03.001 | es_ES |
dc.description.references | Bartle, R. G., Dunford, N., & Schwartz, J. (1955). Weak Compactness and Vector Measures. Canadian Journal of Mathematics, 7, 289-305. doi:10.4153/cjm-1955-032-1 | es_ES |
dc.description.references | Calabuig, J. M., Delgado, O., & Sánchez Pérez, E. A. (2008). Generalized perfect spaces. Indagationes Mathematicae, 19(3), 359-378. doi:10.1016/s0019-3577(09)00008-1 | es_ES |
dc.description.references | Maligranda, L., & Persson, L. E. (1989). Generalized duality of some Banach function spaces. Indagationes Mathematicae (Proceedings), 92(3), 323-338. doi:10.1016/s1385-7258(89)80007-1 | es_ES |
dc.description.references | Schep, A. R. (2009). Products and factors of Banach function spaces. Positivity, 14(2), 301-319. doi:10.1007/s11117-009-0019-2 | es_ES |
dc.description.references | Delgado, O., & Sánchez Pérez, E. A. (2010). Summability Properties for Multiplication Operators on Banach Function Spaces. Integral Equations and Operator Theory, 66(2), 197-214. doi:10.1007/s00020-010-1741-7 | es_ES |
dc.description.references | Sánchez Pérez, E. A. (2015). Product spaces generated by bilinear maps and duality. Czechoslovak Mathematical Journal, 65(3), 801-817. doi:10.1007/s10587-015-0209-y | es_ES |
dc.description.references | Gillespie, T. A. (1981). Factorization in Banach function spaces. Indagationes Mathematicae (Proceedings), 84(3), 287-300. doi:10.1016/1385-7258(81)90040-8 | es_ES |
dc.description.references | Calderón, A. (1964). Intermediate spaces and interpolation, the complex method. Studia Mathematica, 24(2), 113-190. doi:10.4064/sm-24-2-113-190 | es_ES |
dc.description.references | Calabuig, J. M., Delgado, O., & Sánchez Pérez, E. A. (2010). Factorizing operators on Banach function spaces through spaces of multiplication operators. Journal of Mathematical Analysis and Applications, 364(1), 88-103. doi:10.1016/j.jmaa.2009.10.034 | es_ES |
dc.description.references | Calabuig, J. M., Gregori, P., & Sánchez Pérez, E. A. (2008). Radon–Nikodým derivatives for vector measures belonging to Köthe function spaces. Journal of Mathematical Analysis and Applications, 348(1), 469-479. doi:10.1016/j.jmaa.2008.07.024 | es_ES |
dc.description.references | Bu, Q., & Buskes, G. (2012). Polynomials on Banach lattices and positive tensor products. Journal of Mathematical Analysis and Applications, 388(2), 845-862. doi:10.1016/j.jmaa.2011.10.001 | es_ES |
dc.description.references | Kusraeva, Z. A. (2018). Powers of quasi-Banach lattices and orthogonally additive polynomials. Journal of Mathematical Analysis and Applications, 458(1), 767-780. doi:10.1016/j.jmaa.2017.09.019 | es_ES |