- -

Banach Lattice Structures and Concavifications in Banach Spaces

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Banach Lattice Structures and Concavifications in Banach Spaces

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Agud Albesa, Lucia es_ES
dc.contributor.author Calabuig, J. M. es_ES
dc.contributor.author Juan, Maria Aranzazu es_ES
dc.contributor.author Sánchez Pérez, Enrique Alfonso es_ES
dc.date.accessioned 2021-09-11T03:31:09Z
dc.date.available 2021-09-11T03:31:09Z
dc.date.issued 2020-01 es_ES
dc.identifier.uri http://hdl.handle.net/10251/172140
dc.description.abstract [EN] Let (Omega,sigma,mu) be a finite measure space and consider a Banach function space Y(mu). We say that a Banach space E is representable by Y(mu) if there is a continuous bijection I:Y(mu)-> E. In this case, it is possible to define an order and, consequently, a lattice structure for E in such a way that we can identify it as a Banach function space, at least regarding some local properties. General and concrete applications are shown, including the study of the notion of the pth power of a Banach space, the characterization of spaces of operators that are isomorphic to Banach lattices of multiplication operators, and the representation of certain spaces of homogeneous polynomials on Banach spaces as operators acting in function spaces. es_ES
dc.description.sponsorship The authors would like to thank the referees for their valuable comments, which helped to improve the manuscript. The work of the second author was supported by the Ministerio de Ciencia e Innovacion, Agencia Estatal del Investigacion (Spain) and FEDER under project #PGC2018-095366-B-100. The work of the fourth author was supported by the Ministerio de Ciencia e Innovacion, Agencia Estatal del Investigacion (Spain) and FEDER under project #MTM2016 77054-C2-1-P. We did not receive any funds for covering the costs of publishing in open access. es_ES
dc.language Inglés es_ES
dc.publisher MDPI AG es_ES
dc.relation.ispartof Mathematics es_ES
dc.rights Reconocimiento (by) es_ES
dc.subject Banach function space es_ES
dc.subject Concavification es_ES
dc.subject Local theory es_ES
dc.subject Banach space es_ES
dc.subject Strongly p-integral operator es_ES
dc.subject Pth power es_ES
dc.subject.classification MATEMATICA APLICADA es_ES
dc.title Banach Lattice Structures and Concavifications in Banach Spaces es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.3390/math8010127 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/PGC2018-095366-B-I00/ES/ANALISIS VECTORIAL, MULTILINEAL Y APROXIMACION/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//MTM2016-77054-C2-1-P/ES/ANALISIS NO LINEAL, INTEGRACION VECTORIAL Y APLICACIONES EN CIENCIAS DE LA INFORMACION/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Matemática Aplicada - Departament de Matemàtica Aplicada es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto Universitario de Matemática Pura y Aplicada - Institut Universitari de Matemàtica Pura i Aplicada es_ES
dc.description.bibliographicCitation Agud Albesa, L.; Calabuig, JM.; Juan, MA.; Sánchez Pérez, EA. (2020). Banach Lattice Structures and Concavifications in Banach Spaces. Mathematics. 8(1):1-20. https://doi.org/10.3390/math8010127 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.3390/math8010127 es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 20 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 8 es_ES
dc.description.issue 1 es_ES
dc.identifier.eissn 2227-7390 es_ES
dc.relation.pasarela S\400580 es_ES
dc.contributor.funder Agencia Estatal de Investigación es_ES
dc.contributor.funder European Regional Development Fund es_ES
dc.contributor.funder Ministerio de Economía y Competitividad es_ES
dc.description.references Bu, Q., Buskes, G., Popov, A. I., Tcaciuc, A., & Troitsky, V. G. (2012). The 2-concavification of a Banach lattice equals the diagonal of the Fremlin tensor square. Positivity, 17(2), 283-298. doi:10.1007/s11117-012-0166-8 es_ES
dc.description.references Buskes, G., & van Rooij, A. (2001). Squares of Riesz Spaces. Rocky Mountain Journal of Mathematics, 31(1). doi:10.1216/rmjm/1008959667 es_ES
dc.description.references Troitsky, V. G., & Zabeti, O. (2013). Fremlin tensor products of concavifications of Banach lattices. Positivity, 18(1), 191-200. doi:10.1007/s11117-013-0239-3 es_ES
dc.description.references Defant, A. (2001). Positivity, 5(2), 153-175. doi:10.1023/a:1011466509838 es_ES
dc.description.references Defant, A., & Sánchez Pérez, E. A. (2004). Maurey–Rosenthal factorization of positive operators and convexity. Journal of Mathematical Analysis and Applications, 297(2), 771-790. doi:10.1016/j.jmaa.2004.04.047 es_ES
dc.description.references Berezhnoĭ, E. I., & Maligranda, L. (2005). Representation of Banach Ideal Spaces and Factorization of Operators. Canadian Journal of Mathematics, 57(5), 897-940. doi:10.4153/cjm-2005-035-0 es_ES
dc.description.references Reisner, S. (1981). A factorization theorem in Banach lattices and its application to Lorentz spaces. Annales de l’institut Fourier, 31(1), 239-255. doi:10.5802/aif.825 es_ES
dc.description.references Curbera, G. P. (1992). Operators intoL 1 of a vector measure and applications to Banach lattices. Mathematische Annalen, 293(1), 317-330. doi:10.1007/bf01444717 es_ES
dc.description.references Curbera, G. P., Okada, S., & Ricker, W. J. (2019). Extension and integral representation of the finite Hilbert transform in rearrangement invariant spaces. Quaestiones Mathematicae, 43(5-6), 783-812. doi:10.2989/16073606.2019.1605423 es_ES
dc.description.references Delgado, O., & Soria, J. (2007). Optimal domain for the Hardy operator. Journal of Functional Analysis, 244(1), 119-133. doi:10.1016/j.jfa.2006.12.011 es_ES
dc.description.references Bravo, O. G. (2016). On the Optimal Domain of the Laplace Transform. Bulletin of the Malaysian Mathematical Sciences Society, 40(1), 389-408. doi:10.1007/s40840-016-0402-7 es_ES
dc.description.references Mockenhaupt, G., & Ricker, W. J. (2008). Optimal extension of the Hausdorff-Young inequality. Journal für die reine und angewandte Mathematik (Crelles Journal), 2008(620). doi:10.1515/crelle.2008.054 es_ES
dc.description.references Leśnik, K., & Tomaszewski, J. (2017). Pointwise mutipliers of Orlicz function spaces and factorization. Positivity, 21(4), 1563-1573. doi:10.1007/s11117-017-0485-x es_ES
dc.description.references De Jager, P., & Labuschagne, L. E. (2019). Multiplication operators on non-commutative spaces. Journal of Mathematical Analysis and Applications, 475(1), 874-894. doi:10.1016/j.jmaa.2019.03.001 es_ES
dc.description.references Bartle, R. G., Dunford, N., & Schwartz, J. (1955). Weak Compactness and Vector Measures. Canadian Journal of Mathematics, 7, 289-305. doi:10.4153/cjm-1955-032-1 es_ES
dc.description.references Calabuig, J. M., Delgado, O., & Sánchez Pérez, E. A. (2008). Generalized perfect spaces. Indagationes Mathematicae, 19(3), 359-378. doi:10.1016/s0019-3577(09)00008-1 es_ES
dc.description.references Maligranda, L., & Persson, L. E. (1989). Generalized duality of some Banach function spaces. Indagationes Mathematicae (Proceedings), 92(3), 323-338. doi:10.1016/s1385-7258(89)80007-1 es_ES
dc.description.references Schep, A. R. (2009). Products and factors of Banach function spaces. Positivity, 14(2), 301-319. doi:10.1007/s11117-009-0019-2 es_ES
dc.description.references Delgado, O., & Sánchez Pérez, E. A. (2010). Summability Properties for Multiplication Operators on Banach Function Spaces. Integral Equations and Operator Theory, 66(2), 197-214. doi:10.1007/s00020-010-1741-7 es_ES
dc.description.references Sánchez Pérez, E. A. (2015). Product spaces generated by bilinear maps and duality. Czechoslovak Mathematical Journal, 65(3), 801-817. doi:10.1007/s10587-015-0209-y es_ES
dc.description.references Gillespie, T. A. (1981). Factorization in Banach function spaces. Indagationes Mathematicae (Proceedings), 84(3), 287-300. doi:10.1016/1385-7258(81)90040-8 es_ES
dc.description.references Calderón, A. (1964). Intermediate spaces and interpolation, the complex method. Studia Mathematica, 24(2), 113-190. doi:10.4064/sm-24-2-113-190 es_ES
dc.description.references Calabuig, J. M., Delgado, O., & Sánchez Pérez, E. A. (2010). Factorizing operators on Banach function spaces through spaces of multiplication operators. Journal of Mathematical Analysis and Applications, 364(1), 88-103. doi:10.1016/j.jmaa.2009.10.034 es_ES
dc.description.references Calabuig, J. M., Gregori, P., & Sánchez Pérez, E. A. (2008). Radon–Nikodým derivatives for vector measures belonging to Köthe function spaces. Journal of Mathematical Analysis and Applications, 348(1), 469-479. doi:10.1016/j.jmaa.2008.07.024 es_ES
dc.description.references Bu, Q., & Buskes, G. (2012). Polynomials on Banach lattices and positive tensor products. Journal of Mathematical Analysis and Applications, 388(2), 845-862. doi:10.1016/j.jmaa.2011.10.001 es_ES
dc.description.references Kusraeva, Z. A. (2018). Powers of quasi-Banach lattices and orthogonally additive polynomials. Journal of Mathematical Analysis and Applications, 458(1), 767-780. doi:10.1016/j.jmaa.2017.09.019 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem