- -

Banach Lattice Structures and Concavifications in Banach Spaces

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Banach Lattice Structures and Concavifications in Banach Spaces

Mostrar el registro completo del ítem

Agud Albesa, L.; Calabuig, JM.; Juan, MA.; Sánchez Pérez, EA. (2020). Banach Lattice Structures and Concavifications in Banach Spaces. Mathematics. 8(1):1-20. https://doi.org/10.3390/math8010127

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/172140

Ficheros en el ítem

Metadatos del ítem

Título: Banach Lattice Structures and Concavifications in Banach Spaces
Autor: Agud Albesa, Lucia Calabuig, J. M. Juan, Maria Aranzazu Sánchez Pérez, Enrique Alfonso
Entidad UPV: Universitat Politècnica de València. Departamento de Matemática Aplicada - Departament de Matemàtica Aplicada
Universitat Politècnica de València. Instituto Universitario de Matemática Pura y Aplicada - Institut Universitari de Matemàtica Pura i Aplicada
Fecha difusión:
Resumen:
[EN] Let (Omega,sigma,mu) be a finite measure space and consider a Banach function space Y(mu). We say that a Banach space E is representable by Y(mu) if there is a continuous bijection I:Y(mu)-> E. In this case, it is ...[+]
Palabras clave: Banach function space , Concavification , Local theory , Banach space , Strongly p-integral operator , Pth power
Derechos de uso: Reconocimiento (by)
Fuente:
Mathematics. (eissn: 2227-7390 )
DOI: 10.3390/math8010127
Editorial:
MDPI AG
Versión del editor: https://doi.org/10.3390/math8010127
Código del Proyecto:
info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/PGC2018-095366-B-I00/ES/ANALISIS VECTORIAL, MULTILINEAL Y APROXIMACION/
info:eu-repo/grantAgreement/MINECO//MTM2016-77054-C2-1-P/ES/ANALISIS NO LINEAL, INTEGRACION VECTORIAL Y APLICACIONES EN CIENCIAS DE LA INFORMACION/
Agradecimientos:
The authors would like to thank the referees for their valuable comments, which helped to improve the manuscript. The work of the second author was supported by the Ministerio de Ciencia e Innovacion, Agencia Estatal del ...[+]
Tipo: Artículo

References

Bu, Q., Buskes, G., Popov, A. I., Tcaciuc, A., & Troitsky, V. G. (2012). The 2-concavification of a Banach lattice equals the diagonal of the Fremlin tensor square. Positivity, 17(2), 283-298. doi:10.1007/s11117-012-0166-8

Buskes, G., & van Rooij, A. (2001). Squares of Riesz Spaces. Rocky Mountain Journal of Mathematics, 31(1). doi:10.1216/rmjm/1008959667

Troitsky, V. G., & Zabeti, O. (2013). Fremlin tensor products of concavifications of Banach lattices. Positivity, 18(1), 191-200. doi:10.1007/s11117-013-0239-3 [+]
Bu, Q., Buskes, G., Popov, A. I., Tcaciuc, A., & Troitsky, V. G. (2012). The 2-concavification of a Banach lattice equals the diagonal of the Fremlin tensor square. Positivity, 17(2), 283-298. doi:10.1007/s11117-012-0166-8

Buskes, G., & van Rooij, A. (2001). Squares of Riesz Spaces. Rocky Mountain Journal of Mathematics, 31(1). doi:10.1216/rmjm/1008959667

Troitsky, V. G., & Zabeti, O. (2013). Fremlin tensor products of concavifications of Banach lattices. Positivity, 18(1), 191-200. doi:10.1007/s11117-013-0239-3

Defant, A. (2001). Positivity, 5(2), 153-175. doi:10.1023/a:1011466509838

Defant, A., & Sánchez Pérez, E. A. (2004). Maurey–Rosenthal factorization of positive operators and convexity. Journal of Mathematical Analysis and Applications, 297(2), 771-790. doi:10.1016/j.jmaa.2004.04.047

Berezhnoĭ, E. I., & Maligranda, L. (2005). Representation of Banach Ideal Spaces and Factorization of Operators. Canadian Journal of Mathematics, 57(5), 897-940. doi:10.4153/cjm-2005-035-0

Reisner, S. (1981). A factorization theorem in Banach lattices and its application to Lorentz spaces. Annales de l’institut Fourier, 31(1), 239-255. doi:10.5802/aif.825

Curbera, G. P. (1992). Operators intoL 1 of a vector measure and applications to Banach lattices. Mathematische Annalen, 293(1), 317-330. doi:10.1007/bf01444717

Curbera, G. P., Okada, S., & Ricker, W. J. (2019). Extension and integral representation of the finite Hilbert transform in rearrangement invariant spaces. Quaestiones Mathematicae, 43(5-6), 783-812. doi:10.2989/16073606.2019.1605423

Delgado, O., & Soria, J. (2007). Optimal domain for the Hardy operator. Journal of Functional Analysis, 244(1), 119-133. doi:10.1016/j.jfa.2006.12.011

Bravo, O. G. (2016). On the Optimal Domain of the Laplace Transform. Bulletin of the Malaysian Mathematical Sciences Society, 40(1), 389-408. doi:10.1007/s40840-016-0402-7

Mockenhaupt, G., & Ricker, W. J. (2008). Optimal extension of the Hausdorff-Young inequality. Journal für die reine und angewandte Mathematik (Crelles Journal), 2008(620). doi:10.1515/crelle.2008.054

Leśnik, K., & Tomaszewski, J. (2017). Pointwise mutipliers of Orlicz function spaces and factorization. Positivity, 21(4), 1563-1573. doi:10.1007/s11117-017-0485-x

De Jager, P., & Labuschagne, L. E. (2019). Multiplication operators on non-commutative spaces. Journal of Mathematical Analysis and Applications, 475(1), 874-894. doi:10.1016/j.jmaa.2019.03.001

Bartle, R. G., Dunford, N., & Schwartz, J. (1955). Weak Compactness and Vector Measures. Canadian Journal of Mathematics, 7, 289-305. doi:10.4153/cjm-1955-032-1

Calabuig, J. M., Delgado, O., & Sánchez Pérez, E. A. (2008). Generalized perfect spaces. Indagationes Mathematicae, 19(3), 359-378. doi:10.1016/s0019-3577(09)00008-1

Maligranda, L., & Persson, L. E. (1989). Generalized duality of some Banach function spaces. Indagationes Mathematicae (Proceedings), 92(3), 323-338. doi:10.1016/s1385-7258(89)80007-1

Schep, A. R. (2009). Products and factors of Banach function spaces. Positivity, 14(2), 301-319. doi:10.1007/s11117-009-0019-2

Delgado, O., & Sánchez Pérez, E. A. (2010). Summability Properties for Multiplication Operators on Banach Function Spaces. Integral Equations and Operator Theory, 66(2), 197-214. doi:10.1007/s00020-010-1741-7

Sánchez Pérez, E. A. (2015). Product spaces generated by bilinear maps and duality. Czechoslovak Mathematical Journal, 65(3), 801-817. doi:10.1007/s10587-015-0209-y

Gillespie, T. A. (1981). Factorization in Banach function spaces. Indagationes Mathematicae (Proceedings), 84(3), 287-300. doi:10.1016/1385-7258(81)90040-8

Calderón, A. (1964). Intermediate spaces and interpolation, the complex method. Studia Mathematica, 24(2), 113-190. doi:10.4064/sm-24-2-113-190

Calabuig, J. M., Delgado, O., & Sánchez Pérez, E. A. (2010). Factorizing operators on Banach function spaces through spaces of multiplication operators. Journal of Mathematical Analysis and Applications, 364(1), 88-103. doi:10.1016/j.jmaa.2009.10.034

Calabuig, J. M., Gregori, P., & Sánchez Pérez, E. A. (2008). Radon–Nikodým derivatives for vector measures belonging to Köthe function spaces. Journal of Mathematical Analysis and Applications, 348(1), 469-479. doi:10.1016/j.jmaa.2008.07.024

Bu, Q., & Buskes, G. (2012). Polynomials on Banach lattices and positive tensor products. Journal of Mathematical Analysis and Applications, 388(2), 845-862. doi:10.1016/j.jmaa.2011.10.001

Kusraeva, Z. A. (2018). Powers of quasi-Banach lattices and orthogonally additive polynomials. Journal of Mathematical Analysis and Applications, 458(1), 767-780. doi:10.1016/j.jmaa.2017.09.019

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem