- -

Machinery Failure Approach and Spectral Analysis to Study the Reaction Time Dynamics over Consecutive Visual Stimuli: An Entropy-Based Model

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Machinery Failure Approach and Spectral Analysis to Study the Reaction Time Dynamics over Consecutive Visual Stimuli: An Entropy-Based Model

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Iglesias-Martinez, Miguel E. es_ES
dc.contributor.author Hernaiz-Guijarro, Moises es_ES
dc.contributor.author Castro-Palacio, Juan Carlos es_ES
dc.contributor.author Fernández de Córdoba, Pedro es_ES
dc.contributor.author Isidro, J.M. es_ES
dc.contributor.author Navarro-Pardo, Esperanza es_ES
dc.date.accessioned 2021-09-11T03:31:11Z
dc.date.available 2021-09-11T03:31:11Z
dc.date.issued 2020-11 es_ES
dc.identifier.uri http://hdl.handle.net/10251/172141
dc.description.abstract [EN] The reaction times of individuals over consecutive visual stimuli have been studied using an entropy-based model and a failure machinery approach. The used tools include the fast Fourier transform and a spectral entropy analysis. The results indicate that the reaction times produced by the independently responding individuals to visual stimuli appear to be correlated. The spectral analysis and the entropy of the spectrum yield that there are features of similarity in the response times of each participant and among them. Furthermore, the analysis of the mistakes made by the participants during the reaction time experiments concluded that they follow a behavior which is consistent with the MTBF (Mean Time Between Failures) model, widely used in industry for the predictive diagnosis of electrical machines and equipment. es_ES
dc.description.sponsorship This research was partially supported by grant no. RTI2018-102256-B-I00 (Spain). es_ES
dc.language Inglés es_ES
dc.publisher MDPI AG es_ES
dc.relation.ispartof Mathematics es_ES
dc.rights Reconocimiento (by) es_ES
dc.subject Reaction time es_ES
dc.subject Visual stimuli es_ES
dc.subject Fast Fourier transform es_ES
dc.subject Spectral analysis es_ES
dc.subject MTBF model es_ES
dc.subject.classification FISICA APLICADA es_ES
dc.subject.classification MATEMATICA APLICADA es_ES
dc.title Machinery Failure Approach and Spectral Analysis to Study the Reaction Time Dynamics over Consecutive Visual Stimuli: An Entropy-Based Model es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.3390/math8111979 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/RTI2018-102256-B-I00/ES/TRANSFERENCIA DE CALOR EN FLUJOS DE PARED: CANALES Y CAPAS LIMITES/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto Universitario de Matemática Pura y Aplicada - Institut Universitari de Matemàtica Pura i Aplicada es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Matemática Aplicada - Departament de Matemàtica Aplicada es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Física Aplicada - Departament de Física Aplicada es_ES
dc.description.bibliographicCitation Iglesias-Martinez, ME.; Hernaiz-Guijarro, M.; Castro-Palacio, JC.; Fernández De Córdoba, P.; Isidro, J.; Navarro-Pardo, E. (2020). Machinery Failure Approach and Spectral Analysis to Study the Reaction Time Dynamics over Consecutive Visual Stimuli: An Entropy-Based Model. Mathematics. 8(11):1-11. https://doi.org/10.3390/math8111979 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.3390/math8111979 es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 11 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 8 es_ES
dc.description.issue 11 es_ES
dc.identifier.eissn 2227-7390 es_ES
dc.relation.pasarela S\420922 es_ES
dc.contributor.funder AGENCIA ESTATAL DE INVESTIGACION es_ES
dc.description.references Thorpe, S., Fize, D., & Marlot, C. (1996). Speed of processing in the human visual system. Nature, 381(6582), 520-522. doi:10.1038/381520a0 es_ES
dc.description.references Krajbich, I., Bartling, B., Hare, T., & Fehr, E. (2015). Rethinking fast and slow based on a critique of reaction-time reverse inference. Nature Communications, 6(1). doi:10.1038/ncomms8455 es_ES
dc.description.references Barinaga, M. (1996). Neurons Put the Uncertainty Into Reaction Times. Science, 274(5286), 344-344. doi:10.1126/science.274.5286.344 es_ES
dc.description.references Tuch, D. S., Salat, D. H., Wisco, J. J., Zaleta, A. K., Hevelone, N. D., & Rosas, H. D. (2005). Choice reaction time performance correlates with diffusion anisotropy in white matter pathways supporting visuospatial attention. Proceedings of the National Academy of Sciences, 102(34), 12212-12217. doi:10.1073/pnas.0407259102 es_ES
dc.description.references Colonius, H., & Diederich, A. (2017). Measuring multisensory integration: from reaction times to spike counts. Scientific Reports, 7(1). doi:10.1038/s41598-017-03219-5 es_ES
dc.description.references Ritchie, J. B., & de Beeck, H. O. (2019). Using neural distance to predict reaction time for categorizing the animacy, shape, and abstract properties of objects. Scientific Reports, 9(1). doi:10.1038/s41598-019-49732-7 es_ES
dc.description.references Castro-Palacio, J. C., Fernández-de-Córdoba, P., Isidro, J. M., Navarro-Pardo, E., & Selvas Aguilar, R. (2020). Percentile Study of χ Distribution. Application to Response Time Data. Mathematics, 8(4), 514. doi:10.3390/math8040514 es_ES
dc.description.references Hernaiz-Guijarro, M., Castro-Palacio, J. C., Navarro-Pardo, E., Isidro, J. M., & Fernández-de-Córdoba, P. (2019). A Probabilistic Classification Procedure Based on Response Time Analysis Towards a Quick Pre-Diagnosis of Student’s Attention Deficit. Mathematics, 7(5), 473. doi:10.3390/math7050473 es_ES
dc.description.references Yamagishi, T., Matsumoto, Y., Kiyonari, T., Takagishi, H., Li, Y., Kanai, R., & Sakagami, M. (2017). Response time in economic games reflects different types of decision conflict for prosocial and proself individuals. Proceedings of the National Academy of Sciences, 114(24), 6394-6399. doi:10.1073/pnas.1608877114 es_ES
dc.description.references Badau, D., Baydil, B., & Badau, A. (2018). Differences among Three Measures of Reaction Time Based on Hand Laterality in Individual Sports. Sports, 6(2), 45. doi:10.3390/sports6020045 es_ES
dc.description.references Abbasi‐Kesbi, R., Memarzadeh‐Tehran, H., & Deen, M. J. (2017). Technique to estimate human reaction time based on visual perception. Healthcare Technology Letters, 4(2), 73-77. doi:10.1049/htl.2016.0106 es_ES
dc.description.references Gmehlin, D., Fuermaier, A. B. M., Walther, S., Debelak, R., Rentrop, M., Westermann, C., … Aschenbrenner, S. (2014). Intraindividual Variability in Inhibitory Function in Adults with ADHD – An Ex-Gaussian Approach. PLoS ONE, 9(12), e112298. doi:10.1371/journal.pone.0112298 es_ES
dc.description.references Adamo, N., Hodsoll, J., Asherson, P., Buitelaar, J. K., & Kuntsi, J. (2018). Ex-Gaussian, Frequency and Reward Analyses Reveal Specificity of Reaction Time Fluctuations to ADHD and Not Autism Traits. Journal of Abnormal Child Psychology, 47(3), 557-567. doi:10.1007/s10802-018-0457-z es_ES
dc.description.references Shahar, N., Teodorescu, A. R., Karmon-Presser, A., Anholt, G. E., & Meiran, N. (2016). Memory for Action Rules and Reaction Time Variability in Attention-Deficit/Hyperactivity Disorder. Biological Psychiatry: Cognitive Neuroscience and Neuroimaging, 1(2), 132-140. doi:10.1016/j.bpsc.2016.01.003 es_ES
dc.description.references Castellanos, F. X., Sonuga-Barke, E. J. S., Scheres, A., Di Martino, A., Hyde, C., & Walters, J. R. (2005). Varieties of Attention-Deficit/Hyperactivity Disorder-Related Intra-Individual Variability. Biological Psychiatry, 57(11), 1416-1423. doi:10.1016/j.biopsych.2004.12.005 es_ES
dc.description.references Johnson, K. A., Kelly, S. P., Bellgrove, M. A., Barry, E., Cox, M., Gill, M., & Robertson, I. H. (2007). Response variability in Attention Deficit Hyperactivity Disorder: Evidence for neuropsychological heterogeneity. Neuropsychologia, 45(4), 630-638. doi:10.1016/j.neuropsychologia.2006.03.034 es_ES
dc.description.references Di Martino, A., Ghaffari, M., Curchack, J., Reiss, P., Hyde, C., Vannucci, M., … Castellanos, F. X. (2008). Decomposing Intra-Subject Variability in Children with Attention-Deficit/Hyperactivity Disorder. Biological Psychiatry, 64(7), 607-614. doi:10.1016/j.biopsych.2008.03.008 es_ES
dc.description.references Vaurio, R. G., Simmonds, D. J., & Mostofsky, S. H. (2009). Increased intra-individual reaction time variability in attention-deficit/hyperactivity disorder across response inhibition tasks with different cognitive demands. Neuropsychologia, 47(12), 2389-2396. doi:10.1016/j.neuropsychologia.2009.01.022 es_ES
dc.description.references Tarantino, V., Cutini, S., Mogentale, C., & Bisiacchi, P. S. (2013). Time-on-Task in Children with ADHD: An ex-Gaussian Analysis. Journal of the International Neuropsychological Society, 19(7), 820-828. doi:10.1017/s1355617713000623 es_ES
dc.description.references Moret-Tatay, C., & Perea, M. (2011). Is the go/no-go lexical decision task preferable to the yes/no task with developing readers? Journal of Experimental Child Psychology, 110(1), 125-132. doi:10.1016/j.jecp.2011.04.005 es_ES
dc.description.references World Medical Association Declaration of Helsinki. (2013). JAMA, 310(20), 2191. doi:10.1001/jama.2013.281053 es_ES
dc.description.references Rueda, M. R., Fan, J., McCandliss, B. D., Halparin, J. D., Gruber, D. B., Lercari, L. P., & Posner, M. I. (2004). Development of attentional networks in childhood. Neuropsychologia, 42(8), 1029-1040. doi:10.1016/j.neuropsychologia.2003.12.012 es_ES
dc.description.references Forster, K. I., & Forster, J. C. (2003). DMDX: A Windows display program with millisecond accuracy. Behavior Research Methods, Instruments, & Computers, 35(1), 116-124. doi:10.3758/bf03195503 es_ES
dc.description.references Moret-Tatay, C., Leth-Steensen, C., Irigaray, T. Q., Argimon, I. I. L., Gamermann, D., Abad-Tortosa, D., … Fernández de Córdoba Castellá, P. (2016). The Effect of Corrective Feedback on Performance in Basic Cognitive Tasks: An Analysis of RT Components. Psychologica Belgica, 56(4), 370-381. doi:10.5334/pb.240 es_ES
dc.description.references MORENO-CID, A., MORET-TATAY, C., IRIGARAY, T. Q., ARGIMON, I. I. L., … MURPHY, M. (2015). THE ROLE OF AGE AND EMOTIONAL VALENCE IN WORD RECOGNITION: AN EX-GAUSSIAN ANALYSIS. Studia Psychologica, 57(2), 83-94. doi:10.21909/sp.2015.02.685 es_ES
dc.description.references Moret-Tatay, C., Moreno-Cid, A., Argimon, I. I. de L., Quarti Irigaray, T., Szczerbinski, M., Murphy, M., … Fernández de Córdoba Castellá, P. (2014). The effects of age and emotional valence on recognition memory: An ex-Gaussian components analysis. Scandinavian Journal of Psychology, 55(5), 420-426. doi:10.1111/sjop.12136 es_ES
dc.description.references Fan, J., McCandliss, B. D., Sommer, T., Raz, A., & Posner, M. I. (2002). Testing the Efficiency and Independence of Attentional Networks. Journal of Cognitive Neuroscience, 14(3), 340-347. doi:10.1162/089892902317361886 es_ES
dc.description.references Posner, M. I., & Dehaene, S. (1994). Attentional networks. Trends in Neurosciences, 17(2), 75-79. doi:10.1016/0166-2236(94)90078-7 es_ES
dc.description.references Iglesias Martínez, M., García-Gomez, J., Sáez, C., Fernández de Córdoba, P., & Alberto Conejero, J. (2018). Feature Extraction and Similarity of Movement Detection during Sleep, Based on Higher Order Spectra and Entropy of the Actigraphy Signal: Results of the Hispanic Community Health Study/Study of Latinos. Sensors, 18(12), 4310. doi:10.3390/s18124310 es_ES
dc.description.references Ho, T., & Rabitz, H. (1996). A general method for constructing multidimensional molecular potential energy surfaces fromabinitiocalculations. The Journal of Chemical Physics, 104(7), 2584-2597. doi:10.1063/1.470984 es_ES
dc.description.references Castro-Palacio, J. C., Nagy, T., Bemish, R. J., & Meuwly, M. (2014). Computational study of collisions between O(3P) and NO(2Π) at temperatures relevant to the hypersonic flight regime. The Journal of Chemical Physics, 141(16), 164319. doi:10.1063/1.4897263 es_ES
dc.description.references Unke, O. T., Castro-Palacio, J. C., Bemish, R. J., & Meuwly, M. (2016). Collision-induced rotational excitation in N2+(2Σg+,v=0)–Ar: Comparison of computations and experiment. The Journal of Chemical Physics, 144(22), 224307. doi:10.1063/1.4951697 es_ES
dc.description.references Denis-Alpizar, O., Inostroza, N., & Castro Palacio, J. C. (2017). Rotational relaxation of CF+(X1Σ) in collision with He(1S). Monthly Notices of the Royal Astronomical Society, 473(2), 1438-1443. doi:10.1093/mnras/stx2422 es_ES
dc.description.references Castro-Palacio, J. C., Bemish, R. J., & Meuwly, M. (2015). Communication: Equilibrium rate coefficients from atomistic simulations: The O(3P) + NO(2Π) → O2(X3Σg−) + N(4S) reaction at temperatures relevant to the hypersonic flight regime. The Journal of Chemical Physics, 142(9), 091104. doi:10.1063/1.4913975 es_ES
dc.description.references Unke, O. T., & Meuwly, M. (2017). Toolkit for the Construction of Reproducing Kernel-Based Representations of Data: Application to Multidimensional Potential Energy Surfaces. Journal of Chemical Information and Modeling, 57(8), 1923-1931. doi:10.1021/acs.jcim.7b00090 es_ES
dc.description.references Ferreira, F. J. T. E., Baoming, G., & de Almeida, A. T. (2016). Reliability and Operation of High-Efficiency Induction Motors. IEEE Transactions on Industry Applications, 52(6), 4628-4637. doi:10.1109/tia.2016.2600677 es_ES
dc.description.references Tavner, P., Ran, L., Penman, J., & Sedding, H. (2008). Condition Monitoring of Rotating Electrical Machines. doi:10.1049/pbpo056e es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem