- -

Machinery Failure Approach and Spectral Analysis to Study the Reaction Time Dynamics over Consecutive Visual Stimuli: An Entropy-Based Model

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Machinery Failure Approach and Spectral Analysis to Study the Reaction Time Dynamics over Consecutive Visual Stimuli: An Entropy-Based Model

Mostrar el registro completo del ítem

Iglesias-Martinez, ME.; Hernaiz-Guijarro, M.; Castro-Palacio, JC.; Fernández De Córdoba, P.; Isidro, J.; Navarro-Pardo, E. (2020). Machinery Failure Approach and Spectral Analysis to Study the Reaction Time Dynamics over Consecutive Visual Stimuli: An Entropy-Based Model. Mathematics. 8(11):1-11. https://doi.org/10.3390/math8111979

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/172141

Ficheros en el ítem

Metadatos del ítem

Título: Machinery Failure Approach and Spectral Analysis to Study the Reaction Time Dynamics over Consecutive Visual Stimuli: An Entropy-Based Model
Autor: Iglesias-Martinez, Miguel E. Hernaiz-Guijarro, Moises Castro-Palacio, Juan Carlos Fernández de Córdoba, Pedro Isidro, J.M. Navarro-Pardo, Esperanza
Entidad UPV: Universitat Politècnica de València. Instituto Universitario de Matemática Pura y Aplicada - Institut Universitari de Matemàtica Pura i Aplicada
Universitat Politècnica de València. Departamento de Matemática Aplicada - Departament de Matemàtica Aplicada
Universitat Politècnica de València. Departamento de Física Aplicada - Departament de Física Aplicada
Fecha difusión:
Resumen:
[EN] The reaction times of individuals over consecutive visual stimuli have been studied using an entropy-based model and a failure machinery approach. The used tools include the fast Fourier transform and a spectral entropy ...[+]
Palabras clave: Reaction time , Visual stimuli , Fast Fourier transform , Spectral analysis , MTBF model
Derechos de uso: Reconocimiento (by)
Fuente:
Mathematics. (eissn: 2227-7390 )
DOI: 10.3390/math8111979
Editorial:
MDPI AG
Versión del editor: https://doi.org/10.3390/math8111979
Código del Proyecto:
info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/RTI2018-102256-B-I00/ES/TRANSFERENCIA DE CALOR EN FLUJOS DE PARED: CANALES Y CAPAS LIMITES/
Agradecimientos:
This research was partially supported by grant no. RTI2018-102256-B-I00 (Spain).
Tipo: Artículo

References

Thorpe, S., Fize, D., & Marlot, C. (1996). Speed of processing in the human visual system. Nature, 381(6582), 520-522. doi:10.1038/381520a0

Krajbich, I., Bartling, B., Hare, T., & Fehr, E. (2015). Rethinking fast and slow based on a critique of reaction-time reverse inference. Nature Communications, 6(1). doi:10.1038/ncomms8455

Barinaga, M. (1996). Neurons Put the Uncertainty Into Reaction Times. Science, 274(5286), 344-344. doi:10.1126/science.274.5286.344 [+]
Thorpe, S., Fize, D., & Marlot, C. (1996). Speed of processing in the human visual system. Nature, 381(6582), 520-522. doi:10.1038/381520a0

Krajbich, I., Bartling, B., Hare, T., & Fehr, E. (2015). Rethinking fast and slow based on a critique of reaction-time reverse inference. Nature Communications, 6(1). doi:10.1038/ncomms8455

Barinaga, M. (1996). Neurons Put the Uncertainty Into Reaction Times. Science, 274(5286), 344-344. doi:10.1126/science.274.5286.344

Tuch, D. S., Salat, D. H., Wisco, J. J., Zaleta, A. K., Hevelone, N. D., & Rosas, H. D. (2005). Choice reaction time performance correlates with diffusion anisotropy in white matter pathways supporting visuospatial attention. Proceedings of the National Academy of Sciences, 102(34), 12212-12217. doi:10.1073/pnas.0407259102

Colonius, H., & Diederich, A. (2017). Measuring multisensory integration: from reaction times to spike counts. Scientific Reports, 7(1). doi:10.1038/s41598-017-03219-5

Ritchie, J. B., & de Beeck, H. O. (2019). Using neural distance to predict reaction time for categorizing the animacy, shape, and abstract properties of objects. Scientific Reports, 9(1). doi:10.1038/s41598-019-49732-7

Castro-Palacio, J. C., Fernández-de-Córdoba, P., Isidro, J. M., Navarro-Pardo, E., & Selvas Aguilar, R. (2020). Percentile Study of χ Distribution. Application to Response Time Data. Mathematics, 8(4), 514. doi:10.3390/math8040514

Hernaiz-Guijarro, M., Castro-Palacio, J. C., Navarro-Pardo, E., Isidro, J. M., & Fernández-de-Córdoba, P. (2019). A Probabilistic Classification Procedure Based on Response Time Analysis Towards a Quick Pre-Diagnosis of Student’s Attention Deficit. Mathematics, 7(5), 473. doi:10.3390/math7050473

Yamagishi, T., Matsumoto, Y., Kiyonari, T., Takagishi, H., Li, Y., Kanai, R., & Sakagami, M. (2017). Response time in economic games reflects different types of decision conflict for prosocial and proself individuals. Proceedings of the National Academy of Sciences, 114(24), 6394-6399. doi:10.1073/pnas.1608877114

Badau, D., Baydil, B., & Badau, A. (2018). Differences among Three Measures of Reaction Time Based on Hand Laterality in Individual Sports. Sports, 6(2), 45. doi:10.3390/sports6020045

Abbasi‐Kesbi, R., Memarzadeh‐Tehran, H., & Deen, M. J. (2017). Technique to estimate human reaction time based on visual perception. Healthcare Technology Letters, 4(2), 73-77. doi:10.1049/htl.2016.0106

Gmehlin, D., Fuermaier, A. B. M., Walther, S., Debelak, R., Rentrop, M., Westermann, C., … Aschenbrenner, S. (2014). Intraindividual Variability in Inhibitory Function in Adults with ADHD – An Ex-Gaussian Approach. PLoS ONE, 9(12), e112298. doi:10.1371/journal.pone.0112298

Adamo, N., Hodsoll, J., Asherson, P., Buitelaar, J. K., & Kuntsi, J. (2018). Ex-Gaussian, Frequency and Reward Analyses Reveal Specificity of Reaction Time Fluctuations to ADHD and Not Autism Traits. Journal of Abnormal Child Psychology, 47(3), 557-567. doi:10.1007/s10802-018-0457-z

Shahar, N., Teodorescu, A. R., Karmon-Presser, A., Anholt, G. E., & Meiran, N. (2016). Memory for Action Rules and Reaction Time Variability in Attention-Deficit/Hyperactivity Disorder. Biological Psychiatry: Cognitive Neuroscience and Neuroimaging, 1(2), 132-140. doi:10.1016/j.bpsc.2016.01.003

Castellanos, F. X., Sonuga-Barke, E. J. S., Scheres, A., Di Martino, A., Hyde, C., & Walters, J. R. (2005). Varieties of Attention-Deficit/Hyperactivity Disorder-Related Intra-Individual Variability. Biological Psychiatry, 57(11), 1416-1423. doi:10.1016/j.biopsych.2004.12.005

Johnson, K. A., Kelly, S. P., Bellgrove, M. A., Barry, E., Cox, M., Gill, M., & Robertson, I. H. (2007). Response variability in Attention Deficit Hyperactivity Disorder: Evidence for neuropsychological heterogeneity. Neuropsychologia, 45(4), 630-638. doi:10.1016/j.neuropsychologia.2006.03.034

Di Martino, A., Ghaffari, M., Curchack, J., Reiss, P., Hyde, C., Vannucci, M., … Castellanos, F. X. (2008). Decomposing Intra-Subject Variability in Children with Attention-Deficit/Hyperactivity Disorder. Biological Psychiatry, 64(7), 607-614. doi:10.1016/j.biopsych.2008.03.008

Vaurio, R. G., Simmonds, D. J., & Mostofsky, S. H. (2009). Increased intra-individual reaction time variability in attention-deficit/hyperactivity disorder across response inhibition tasks with different cognitive demands. Neuropsychologia, 47(12), 2389-2396. doi:10.1016/j.neuropsychologia.2009.01.022

Tarantino, V., Cutini, S., Mogentale, C., & Bisiacchi, P. S. (2013). Time-on-Task in Children with ADHD: An ex-Gaussian Analysis. Journal of the International Neuropsychological Society, 19(7), 820-828. doi:10.1017/s1355617713000623

Moret-Tatay, C., & Perea, M. (2011). Is the go/no-go lexical decision task preferable to the yes/no task with developing readers? Journal of Experimental Child Psychology, 110(1), 125-132. doi:10.1016/j.jecp.2011.04.005

World Medical Association Declaration of Helsinki. (2013). JAMA, 310(20), 2191. doi:10.1001/jama.2013.281053

Rueda, M. R., Fan, J., McCandliss, B. D., Halparin, J. D., Gruber, D. B., Lercari, L. P., & Posner, M. I. (2004). Development of attentional networks in childhood. Neuropsychologia, 42(8), 1029-1040. doi:10.1016/j.neuropsychologia.2003.12.012

Forster, K. I., & Forster, J. C. (2003). DMDX: A Windows display program with millisecond accuracy. Behavior Research Methods, Instruments, & Computers, 35(1), 116-124. doi:10.3758/bf03195503

Moret-Tatay, C., Leth-Steensen, C., Irigaray, T. Q., Argimon, I. I. L., Gamermann, D., Abad-Tortosa, D., … Fernández de Córdoba Castellá, P. (2016). The Effect of Corrective Feedback on Performance in Basic Cognitive Tasks: An Analysis of RT Components. Psychologica Belgica, 56(4), 370-381. doi:10.5334/pb.240

MORENO-CID, A., MORET-TATAY, C., IRIGARAY, T. Q., ARGIMON, I. I. L., … MURPHY, M. (2015). THE ROLE OF AGE AND EMOTIONAL VALENCE IN WORD RECOGNITION: AN EX-GAUSSIAN ANALYSIS. Studia Psychologica, 57(2), 83-94. doi:10.21909/sp.2015.02.685

Moret-Tatay, C., Moreno-Cid, A., Argimon, I. I. de L., Quarti Irigaray, T., Szczerbinski, M., Murphy, M., … Fernández de Córdoba Castellá, P. (2014). The effects of age and emotional valence on recognition memory: An ex-Gaussian components analysis. Scandinavian Journal of Psychology, 55(5), 420-426. doi:10.1111/sjop.12136

Fan, J., McCandliss, B. D., Sommer, T., Raz, A., & Posner, M. I. (2002). Testing the Efficiency and Independence of Attentional Networks. Journal of Cognitive Neuroscience, 14(3), 340-347. doi:10.1162/089892902317361886

Posner, M. I., & Dehaene, S. (1994). Attentional networks. Trends in Neurosciences, 17(2), 75-79. doi:10.1016/0166-2236(94)90078-7

Iglesias Martínez, M., García-Gomez, J., Sáez, C., Fernández de Córdoba, P., & Alberto Conejero, J. (2018). Feature Extraction and Similarity of Movement Detection during Sleep, Based on Higher Order Spectra and Entropy of the Actigraphy Signal: Results of the Hispanic Community Health Study/Study of Latinos. Sensors, 18(12), 4310. doi:10.3390/s18124310

Ho, T., & Rabitz, H. (1996). A general method for constructing multidimensional molecular potential energy surfaces fromabinitiocalculations. The Journal of Chemical Physics, 104(7), 2584-2597. doi:10.1063/1.470984

Castro-Palacio, J. C., Nagy, T., Bemish, R. J., & Meuwly, M. (2014). Computational study of collisions between O(3P) and NO(2Π) at temperatures relevant to the hypersonic flight regime. The Journal of Chemical Physics, 141(16), 164319. doi:10.1063/1.4897263

Unke, O. T., Castro-Palacio, J. C., Bemish, R. J., & Meuwly, M. (2016). Collision-induced rotational excitation in N2+(2Σg+,v=0)–Ar: Comparison of computations and experiment. The Journal of Chemical Physics, 144(22), 224307. doi:10.1063/1.4951697

Denis-Alpizar, O., Inostroza, N., & Castro Palacio, J. C. (2017). Rotational relaxation of CF+(X1Σ) in collision with He(1S). Monthly Notices of the Royal Astronomical Society, 473(2), 1438-1443. doi:10.1093/mnras/stx2422

Castro-Palacio, J. C., Bemish, R. J., & Meuwly, M. (2015). Communication: Equilibrium rate coefficients from atomistic simulations: The O(3P) + NO(2Π) → O2(X3Σg−) + N(4S) reaction at temperatures relevant to the hypersonic flight regime. The Journal of Chemical Physics, 142(9), 091104. doi:10.1063/1.4913975

Unke, O. T., & Meuwly, M. (2017). Toolkit for the Construction of Reproducing Kernel-Based Representations of Data: Application to Multidimensional Potential Energy Surfaces. Journal of Chemical Information and Modeling, 57(8), 1923-1931. doi:10.1021/acs.jcim.7b00090

Ferreira, F. J. T. E., Baoming, G., & de Almeida, A. T. (2016). Reliability and Operation of High-Efficiency Induction Motors. IEEE Transactions on Industry Applications, 52(6), 4628-4637. doi:10.1109/tia.2016.2600677

Tavner, P., Ran, L., Penman, J., & Sedding, H. (2008). Condition Monitoring of Rotating Electrical Machines. doi:10.1049/pbpo056e

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem