- -

Structural modulation and direct measurement of subnanometric bimetallic PtSn clusters confined in zeolites

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Structural modulation and direct measurement of subnanometric bimetallic PtSn clusters confined in zeolites

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Liu, Lichen es_ES
dc.contributor.author Lopez-Haro, Miguel es_ES
dc.contributor.author Lopes, Christian W. es_ES
dc.contributor.author Rojas-Buzo, Sergio es_ES
dc.contributor.author Concepción Heydorn, Patricia es_ES
dc.contributor.author Manzorro, Ramon es_ES
dc.contributor.author Simonelli, Laura es_ES
dc.contributor.author Sattler, Aaron es_ES
dc.contributor.author Serna, Pedro es_ES
dc.contributor.author Calvino, Jose J. es_ES
dc.contributor.author Corma Canós, Avelino es_ES
dc.date.accessioned 2021-09-11T03:31:12Z
dc.date.available 2021-09-11T03:31:12Z
dc.date.issued 2020-08 es_ES
dc.identifier.uri http://hdl.handle.net/10251/172142
dc.description.abstract [EN] Modulating the structures of subnanometric metal clusters at the atomic level is a great synthetic and characterization challenge in catalysis. Here, we show how the catalytic properties of subnanometric platinum clusters (0.5-0.6 nm) confined in the sinusoidal 10R channels of purely siliceous MFI zeolite are modulated upon introduction of partially reduced tin species that interact with the noble metal at the metal/support interface. The platinum-tin clusters are stable in H(2)over an extended period of time (>6 h), even at high temperatures (for example, 600 degrees C), which is determined by only a few additional tin atoms added to the platinum clusters. The structural features of platinum-tin clusters, which are not immediately visible by conventional characterization techniques but can be established after combination of in situ extended X-ray absorption fine structure, high-angle annular dark-field scanning transmission electron microscopy and CO infrared data, are key to providing a one-order of magnitude lower deactivation rate in the propane dehydrogenation reaction while maintaining high intrinsic (initial) catalytic activity es_ES
dc.description.sponsorship This work was supported by the European Union through the European Research Council (grant ERC-AdG-2014-671093, SynCatMatch) and the Spanish government through the "Severo Ochoa Program" (SEV-2016-0683). L.L. thanks the ITQ for providing a contract. The authors also thank the Microscopy Service of the UPV for the TEM and STEM measurements. The XAS measurements were carried out in the CLAESS beamline of the ALBA synchrotron. We thank Giovanni Agostini for his kind support in the analysis of XAS data. HR-HAADF-STEM measurements were performed at DME-UCA at Cadiz University with financial support from FEDER/MINECO (MAT2017-87579-R and MAT2016-81118-P). C.W.L. thanks CAPES (Science without Frontiers -Process no. 13191/13-6) for a predoctoral fellowship. The financial support from ExxonMobil for this project is also greatly acknowledged. es_ES
dc.language Inglés es_ES
dc.publisher Nature Publishing Group es_ES
dc.relation.ispartof Nature Catalysis es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject.classification QUIMICA ORGANICA es_ES
dc.title Structural modulation and direct measurement of subnanometric bimetallic PtSn clusters confined in zeolites es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1038/s41929-020-0472-7 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/EC/H2020/671093/EU/MATching zeolite SYNthesis with CATalytic activity/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/CAPES//13191%2F13-6/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//SEV-2016-0683/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2013-2016/MAT2017-87579-R/ES/FASES 2D ULTRAFINAS SOBRE OXIDOS CON MORFOLOGIA CONTROLADA: PLATAFORMA DE NANOCATALIZADORES MULTICOMPONENTE CON APLICACIONES EN PROTECCION DEL MEDIO AMBIENTE/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//MAT2016-81118-P/ES/DISEÑO Y CARACTERIZACION AVANZADA DE CATALIZADORES CON NANOINTERFASES MODELO AU%2F%2FCEO2/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Química - Departament de Química es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto Universitario Mixto de Tecnología Química - Institut Universitari Mixt de Tecnologia Química es_ES
dc.description.bibliographicCitation Liu, L.; Lopez-Haro, M.; Lopes, CW.; Rojas-Buzo, S.; Concepción Heydorn, P.; Manzorro, R.; Simonelli, L.... (2020). Structural modulation and direct measurement of subnanometric bimetallic PtSn clusters confined in zeolites. Nature Catalysis. 3(8):628-638. https://doi.org/10.1038/s41929-020-0472-7 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1038/s41929-020-0472-7 es_ES
dc.description.upvformatpinicio 628 es_ES
dc.description.upvformatpfin 638 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 3 es_ES
dc.description.issue 8 es_ES
dc.identifier.eissn 2520-1158 es_ES
dc.relation.pasarela S\433991 es_ES
dc.contributor.funder European Research Council es_ES
dc.contributor.funder Agencia Estatal de Investigación es_ES
dc.contributor.funder European Regional Development Fund es_ES
dc.contributor.funder Ministerio de Economía y Competitividad es_ES
dc.contributor.funder Coordenaçao de Aperfeiçoamento de Pessoal de Nível Superior, Brasil es_ES
dc.description.references Liu, L. & Corma, A. Metal catalysts for heterogeneous catalysis: from single atoms to nanoclusters and nanoparticles. Chem. Rev. 118, 4981–5079 (2018). es_ES
dc.description.references An, K. & Somorjai, G. A. Nanocatalysis I: synthesis of metal and bimetallic nanoparticles and porous oxides and their catalytic reaction studies. Catal. Lett. 145, 233–248 (2014). es_ES
dc.description.references Ferrando, R., Jellinek, J. & Johnston, R. L. Nanoalloys: from theory to applications of alloy clusters and nanoparticles. Chem. Rev. 108, 845–910 (2008). es_ES
dc.description.references Yu, W., Porosoff, M. D. & Chen, J. G. Review of Pt-based bimetallic catalysis: from model surfaces to supported catalysts. Chem. Rev. 112, 5780–5817 (2012). es_ES
dc.description.references Resasco, D. E. in Encyclopedia of Catalysis (ed. Horváth, I.) (Wiley, 2002). es_ES
dc.description.references Vora, B. V. Development of dehydrogenation catalysts and processes. Top. Catal. 55, 1297–1308 (2012). es_ES
dc.description.references Sattler, J. J., Ruiz-Martinez, J., Santillan-Jimenez, E. & Weckhuysen, B. M. Catalytic dehydrogenation of light alkanes on metals and metal oxides. Chem. Rev. 114, 10613–10653 (2014). es_ES
dc.description.references Sanfilippo, D. & Miracca, I. Dehydrogenation of paraffins: synergies between catalyst design and reactor engineering. Catal. Today 111, 133–139 (2006). es_ES
dc.description.references Redekop, E. A. et al. Delivering a modifying element to metal nanoparticles via support: Pt–Ga alloying during the reduction of Pt/Mg(Al,Ga)Ox catalysts and Its effects on propane dehydrogenation. ACS Catal. 4, 1812–1824 (2014). es_ES
dc.description.references Deng, L. et al. Dehydrogenation of propane over silica-supported platinum–tin catalysts prepared by direct reduction: effects of tin/platinum ratio and reduction temperature. ChemCatChem 6, 2680–2691 (2014). es_ES
dc.description.references Filez, M., Redekop, E. A., Poelman, H., Galvita, V. V. & Marin, G. B. Advanced elemental characterization during Pt–In catalyst formation by wavelet transformed X-ray absorption spectroscopy. Anal. Chem. 87, 3520–3526 (2015). es_ES
dc.description.references Searles, K. et al. Highly productive propane dehydrogenation catalyst using silica-supported Ga–Pt nanoparticles generated from single-sites. J. Am. Chem. Soc. 140, 11674–11679 (2018). es_ES
dc.description.references Liu, L. et al. Generation of subnanometric platinum with high stability during transformation of a 2D zeolite into 3D. Nat. Mater. 16, 132–138 (2017). es_ES
dc.description.references Moliner, M. et al. Reversible transformation of Pt nanoparticles into single atoms inside high-silica chabazite zeolite. J. Am. Chem. Soc. 138, 15743–15750 (2016). es_ES
dc.description.references Liu, L. et al. Evolution and stabilization of subnanometric metal species in confined space by in situ TEM. Nat. Commun. 9, 574 (2018). es_ES
dc.description.references Liu, Y. et al. A general strategy for fabricating isolated single metal atomic site catalysts in Y zzeolite. J. Am. Chem. Soc. 141, 9305–9311 (2019). es_ES
dc.description.references Liu, L. et al. Regioselective generation and reactivity control of subnanometric platinum clusters in zeolites for high-temperature catalysis. Nat. Mater. 18, 866–873 (2019). es_ES
dc.description.references Lazic, I., Bosch, E. G. T. & Lazar, S. Phase contrast STEM for thin samples: integrated differential phase contrast. Ultramicroscopy 160, 265–280 (2016). es_ES
dc.description.references Yucelen, E., Lazic, I. & Bosch, E. G. T. Phase contrast scanning transmission electron microscopy imaging of light and heavy atoms at the limit of contrast and resolution. Sci. Rep. 8, 2676 (2018). es_ES
dc.description.references Lewis, J. D. et al. Distinguishing active site identity in Sn-Beta zeolites using 31P MAS NMR of adsorbed trimethylphosphine oxide. ACS Catal. 8, 3076–3086 (2018). es_ES
dc.description.references Uemura, Y. et al. In situ time-resolved XAFS study on the structural transformation and phase separation of Pt3Sn and PtSn alloy nanoparticles on carbon in the oxidation process. Phys. Chem. Chem. Phys. 13, 15833–15844 (2011). es_ES
dc.description.references Ramallo-López, J. M. et al. XPS and XAFS Pt L2,3-edge studies of dispersed metallic Pt and PtSn clusters on SiO2 obtained by organometallic synthesis: structural and electronic characteristics. J. Phys. Chem. B 107, 11441–11451 (2003). es_ES
dc.description.references Deng, L. et al. Elucidating strong metal-support interactions in Pt–Sn/SiO2 catalyst and its consequences for dehydrogenation of lower alkanes. J. Catal. 365, 277–291 (2018). es_ES
dc.description.references Zhang, B. et al. Exceptional electrochemical performance of freestanding electrospun carbon nanofiber anodes containing ultrafine SnOx particles. Energy Environ. Sci. 5, 9895–9902 (2012). es_ES
dc.description.references Collins, S. E. et al. The role of Pd–Ga bimetallic particles in the bifunctional mechanism of selective methanol synthesis via CO2 hydrogenation on a Pd/Ga2O3 catalyst. J. Catal. 292, 90–98 (2012). es_ES
dc.description.references Ogata, K. et al. Evolving affinity between Coulombic reversibility and hysteretic phase transformations in nano-structured silicon-based lithium-ion batteries. Nat. Commun. 9, 479 (2018). es_ES
dc.description.references Cui, C., Gan, L., Heggen, M., Rudi, S. & Strasser, P. Compositional segregation in shaped Pt alloy nanoparticles and their structural behaviour during electrocatalysis. Nat. Mater. 12, 765–771 (2013). es_ES
dc.description.references Pei, Y. et al. Catalytic properties of intermetallic platinum-tin nanoparticles with non-stoichiometric compositions. J. Catal. 374, 136–142 (2019). es_ES
dc.description.references Freakley, S. J. et al. Palladium-tin catalysts for the direct synthesis of H2O2 with high selectivity. Science 351, 965–968 (2016). es_ES
dc.description.references Mayrhofer, K. J., Juhart, V., Hartl, K., Hanzlik, M. & Arenz, M. Adsorbate-induced surface segregation for core–shell nanocatalysts. Angew. Chem. Int. Ed. 48, 3529–3531 (2009). es_ES
dc.description.references Peng, L., Ringe, E., Van Duyne, R. P. & Marks, L. D. Segregation in bimetallic nanoparticles. Phys. Chem. Chem. Phys. 17, 27940–27951 (2015). es_ES
dc.description.references Li, G.-J., Fujimoto, T., Fukuoka, A. & Ichikawa, M. Ship-in-bottle synthesis of Pt9-Pt15 carbonyl clusters inside NaY and NaX zeolites, in-situ FTIR and EXAFS characterization and the catalytic behaviors in 13CO exchange reaction and NO reduction by CO. Catal. Lett. 12, 171–185 (1992). es_ES
dc.description.references Gruene, P., Fielicke, A., Meijer, G. & Rayner, D. M. The adsorption of CO on group 10 (Ni, Pd, Pt) transition-metal clusters. Phys. Chem. Chem. Phys. 10, 6144–6149 (2008). es_ES
dc.description.references Serykh, A. I. et al. Stable subnanometre Pt clusters in zeolite NaX via stoichiometric carbonyl complexes: probing of negative charge by DRIFT spectroscopy of adsorbed CO and H2. Phys. Chem. Chem. Phys. 2, 5647–5652 (2000). es_ES
dc.description.references Garnier, A., Sall, S., Garin, F., Chetcuti, M. J. & Petit, C. Site effects in the adsorption of carbon monoxide on real 1.8 nm Pt nanoparticles: an infrared investigation in time and temperature. J. Mol. Catal. A 373, 127–134 (2013). es_ES
dc.description.references Corma, A., Serna, P., Concepcion, P. & Calvino, J. J. Transforming nonselective into chemoselective metal catalysts for the hydrogenation of substituted nitroaromatics. J. Am. Chem. Soc. 130, 8748–8753 (2008). es_ES
dc.description.references Concepcion, P. et al. The promotional effect of Sn-beta zeolites on platinum for the selective hydrogenation of α,β-unsaturated aldehydes. Phys. Chem. Chem. Phys. 15, 12048–12055 (2013). es_ES
dc.description.references de Menorval, L.-C., Chaqroune, A., Coq, B. & François Figueras, A. Characterization of mono- and bi-metallic platinum catalysts using CO FTIR spectroscopy size effects and topological segregation. J. Chem. Soc., Faraday Trans. 93, 3715–3720 (1997). es_ES
dc.description.references Balakrishnan, K. A chemisorption and XPS study of bimetallic Pt-Sn/Al2O3 catalysts. J. Catal. 127, 287–306 (1991). es_ES
dc.description.references Panja, C. & Koel, B. E. Probing the influence of alloyed Sn on Pt(100) surface chemistry by CO chemisorption. Isr. J. Chem. 38, 365–374 (1998). es_ES
dc.description.references Liu, Z., Jackson, G. S. & Eichhorn, B. W. PtSn intermetallic, core–shell, and alloy nanoparticles as CO-tolerant electrocatalysts for H2 oxidation. Angew. Chem. Int. Ed. 49, 3173–3176 (2010). es_ES
dc.description.references Wang, X. et al. Pt/Sn intermetallic, core/shell and alloy nanoparticles: colloidal synthesis and structural control. Chem. Mater. 25, 1400–1407 (2012). es_ES
dc.description.references Redekop, E. A. et al. Early stages in the formation and burning of graphene on a Pt/Mg(Al)Ox dehydrogenation catalyst: a temperature- and time-resolved study. J. Catal. 344, 482–495 (2016). es_ES
dc.description.references Shi, L. et al. Al2O3 nanosheets rich in pentacoordinate Al3+ ions stabilize Pt-Sn clusters for propane dehydrogenation. Angew. Chem. Int. Ed. 54, 13994–13998 (2015). es_ES
dc.description.references Sattler, J. J., Beale, A. M. & Weckhuysen, B. M. Operando Raman spectroscopy study on the deactivation of Pt/Al2O3 and Pt–Sn/Al2O3 propane dehydrogenation catalysts. Phys. Chem. Chem. Phys. 15, 12095–12103 (2013). es_ES
dc.description.references Vu, B. K. et al. Location and structure of coke generated over Pt–Sn/Al2O3 in propane dehydrogenation. J. Ind. Eng. Chem. 17, 71–76 (2011). es_ES
dc.description.references Vu, B. K. et al. Pt–Sn alloy phases and coke mobility over Pt–Sn/Al2O3 and Pt–Sn/ZnAl2O4 catalysts for propane dehydrogenation. Appl. Catal. A 400, 25–33 (2011). es_ES
dc.description.references Liu, L. et al. Determination of the evolution of heterogeneous single metal atoms and nanoclusters under reaction conditions: which are the working catalytic sites? ACS Catal. 9, 10626–10639 (2019). es_ES
dc.description.references López-Haro, M. et al. A macroscopically relevant 3D-metrology approach for nanocatalysis research. Part. Part. Syst. Charact. 35, 1700343 (2018). es_ES
dc.description.references Kirkland, E. J. Advanced Computing in Electron Microscopy (Springer, 2010). es_ES
dc.description.references Bernal, S. et al. The interpretation of HREM images of supported metal catalysts using image simulation: profile view images. Ultramicroscopy 72, 135–164 (1998). es_ES
dc.description.references Simonelli, L. et al. CLÆSS: the hard X-ray absorption beamline of the ALBA CELLS synchrotron. Cogent Phys. 3, 1231987 (2016). es_ES
dc.description.references Guilera, G., Rey, F., Hernández-Fenollosa, J. & Cortés-Vergaz, J. J. One body, many heads; the Cerberus of catalysis. A new multipurpose in-situ cell for XAS at ALBA. J. Phys. Conf. Ser. 430, 012057 (2013). es_ES
dc.description.references Ravel, B. & Newville, M. ATHENA, ARTEMIS, HEPHAESTUS: data analysis for X-ray absorption spectroscopy using IFEFFIT. J. Synchrotron Radiat. 12, 537–541 (2005). es_ES
dc.description.references Yin, F., Ji, S., Wu, P., Zhao, F. & Li, C. Deactivation behavior of Pd-based SBA-15 mesoporous silica catalysts for the catalytic combustion of methane. J. Catal. 257, 108–116 (2008). es_ES
dc.description.references Allian, A. D. et al. Chemisorption of CO and mechanism of CO oxidation on supported platinum nanoclusters. J. Am. Chem. Soc. 133, 4498–4517 (2011). es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem