Geraghty, M. A. (1973). On contractive mappings. Proceedings of the American Mathematical Society, 40(2), 604-604. doi:10.1090/s0002-9939-1973-0334176-5
Gupta, V., Shatanawi, W., & Mani, N. (2016). Fixed point theorems for $$(\psi , \beta )$$ ( ψ , β ) -Geraghty contraction type maps in ordered metric spaces and some applications to integral and ordinary differential equations. Journal of Fixed Point Theory and Applications, 19(2), 1251-1267. doi:10.1007/s11784-016-0303-2
Cho, S.-H., Bae, J.-S., & Karapınar, E. (2013). Fixed point theorems for α-Geraghty contraction type maps in metric spaces. Fixed Point Theory and Applications, 2013(1). doi:10.1186/1687-1812-2013-329
[+]
Geraghty, M. A. (1973). On contractive mappings. Proceedings of the American Mathematical Society, 40(2), 604-604. doi:10.1090/s0002-9939-1973-0334176-5
Gupta, V., Shatanawi, W., & Mani, N. (2016). Fixed point theorems for $$(\psi , \beta )$$ ( ψ , β ) -Geraghty contraction type maps in ordered metric spaces and some applications to integral and ordinary differential equations. Journal of Fixed Point Theory and Applications, 19(2), 1251-1267. doi:10.1007/s11784-016-0303-2
Cho, S.-H., Bae, J.-S., & Karapınar, E. (2013). Fixed point theorems for α-Geraghty contraction type maps in metric spaces. Fixed Point Theory and Applications, 2013(1). doi:10.1186/1687-1812-2013-329
Alegre, C., & Marín, J. (2016). Modified w-distances on quasi-metric spaces and a fixed point theorem on complete quasi-metric spaces. Topology and its Applications, 203, 32-41. doi:10.1016/j.topol.2015.12.073
Alegre Gil, C., Karapınar, E., Marín Molina, J., & Tirado Peláez, P. (2019). Revisiting Bianchini and Grandolfi Theorem in the Context of Modified $$\omega $$-Distances. Results in Mathematics, 74(4). doi:10.1007/s00025-019-1074-z
Alegre, C., Marín, J., & Romaguera, S. (2014). A fixed point theorem for generalized contractions involving w-distances on complete quasi-metric spaces. Fixed Point Theory and Applications, 2014(1). doi:10.1186/1687-1812-2014-40
Park, S. (2000). On generalizations of the Ekeland-type variational principles. Nonlinear Analysis: Theory, Methods & Applications, 39(7), 881-889. doi:10.1016/s0362-546x(98)00253-3
[-]