Mostrar el registro sencillo del ítem
dc.contributor.author | Alegre Gil, Maria Carmen | es_ES |
dc.contributor.author | Fulga, Andreea | es_ES |
dc.contributor.author | Karapinar, Erdal | es_ES |
dc.contributor.author | Tirado Peláez, Pedro | es_ES |
dc.date.accessioned | 2021-09-11T03:31:15Z | |
dc.date.available | 2021-09-11T03:31:15Z | |
dc.date.issued | 2020-09 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/172143 | |
dc.description.abstract | [EN] In this paper we consider a kind of Geraghty contractions by using mw-distances in the setting of complete quasi-metric spaces. We provide fixed point theorems for this type of mappings and illustrate with some examples the results obtained. | es_ES |
dc.description.sponsorship | This research was partially supported by the Spanish Ministry of Science, Innovation and Universities. Grant number PGC2018-095709-B-C21 and AEI/FEDER, UE funds. | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | MDPI AG | es_ES |
dc.relation.ispartof | Mathematics | es_ES |
dc.rights | Reconocimiento (by) | es_ES |
dc.subject | Fixed point | es_ES |
dc.subject | Metric space | es_ES |
dc.subject | Quasi-metric space | es_ES |
dc.subject.classification | MATEMATICA APLICADA | es_ES |
dc.title | A Discussion on p-Geraghty Contraction on mw-Quasi-Metric Spaces | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.3390/math8091437 | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/PGC2018-095709-B-C21/ES/METRICAS DIFUSAS Y OPERADORES DE INDISTINGUIBILIDAD: APLICACIONES EN ROBOTICA/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Matemática Aplicada - Departament de Matemàtica Aplicada | es_ES |
dc.description.bibliographicCitation | Alegre Gil, MC.; Fulga, A.; Karapinar, E.; Tirado Peláez, P. (2020). A Discussion on p-Geraghty Contraction on mw-Quasi-Metric Spaces. Mathematics. 8(9):1-10. https://doi.org/10.3390/math8091437 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.3390/math8091437 | es_ES |
dc.description.upvformatpinicio | 1 | es_ES |
dc.description.upvformatpfin | 10 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 8 | es_ES |
dc.description.issue | 9 | es_ES |
dc.identifier.eissn | 2227-7390 | es_ES |
dc.relation.pasarela | S\417391 | es_ES |
dc.contributor.funder | Agencia Estatal de Investigación | es_ES |
dc.contributor.funder | European Regional Development Fund | es_ES |
dc.description.references | Geraghty, M. A. (1973). On contractive mappings. Proceedings of the American Mathematical Society, 40(2), 604-604. doi:10.1090/s0002-9939-1973-0334176-5 | es_ES |
dc.description.references | Gupta, V., Shatanawi, W., & Mani, N. (2016). Fixed point theorems for $$(\psi , \beta )$$ ( ψ , β ) -Geraghty contraction type maps in ordered metric spaces and some applications to integral and ordinary differential equations. Journal of Fixed Point Theory and Applications, 19(2), 1251-1267. doi:10.1007/s11784-016-0303-2 | es_ES |
dc.description.references | Cho, S.-H., Bae, J.-S., & Karapınar, E. (2013). Fixed point theorems for α-Geraghty contraction type maps in metric spaces. Fixed Point Theory and Applications, 2013(1). doi:10.1186/1687-1812-2013-329 | es_ES |
dc.description.references | Alegre, C., & Marín, J. (2016). Modified w-distances on quasi-metric spaces and a fixed point theorem on complete quasi-metric spaces. Topology and its Applications, 203, 32-41. doi:10.1016/j.topol.2015.12.073 | es_ES |
dc.description.references | Alegre Gil, C., Karapınar, E., Marín Molina, J., & Tirado Peláez, P. (2019). Revisiting Bianchini and Grandolfi Theorem in the Context of Modified $$\omega $$-Distances. Results in Mathematics, 74(4). doi:10.1007/s00025-019-1074-z | es_ES |
dc.description.references | Alegre, C., Marín, J., & Romaguera, S. (2014). A fixed point theorem for generalized contractions involving w-distances on complete quasi-metric spaces. Fixed Point Theory and Applications, 2014(1). doi:10.1186/1687-1812-2014-40 | es_ES |
dc.description.references | Park, S. (2000). On generalizations of the Ekeland-type variational principles. Nonlinear Analysis: Theory, Methods & Applications, 39(7), 881-889. doi:10.1016/s0362-546x(98)00253-3 | es_ES |