- -

Evaluation of brass electrodeposition at RDE from cyanide-free bath using EDTA as a complexing agent

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Evaluation of brass electrodeposition at RDE from cyanide-free bath using EDTA as a complexing agent

Mostrar el registro completo del ítem

Santana Barros, K.; Ortega Navarro, EM.; Pérez-Herranz, V.; Romano Espinosa, DC. (2020). Evaluation of brass electrodeposition at RDE from cyanide-free bath using EDTA as a complexing agent. Journal of Electroanalytical Chemistry. 865:1-11. https://doi.org/10.1016/j.jelechem.2020.114129

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/172296

Ficheros en el ítem

Metadatos del ítem

Título: Evaluation of brass electrodeposition at RDE from cyanide-free bath using EDTA as a complexing agent
Autor: Santana Barros, Kayo Ortega Navarro, Emma María Pérez-Herranz, Valentín Romano Espinosa, Denise Crocce
Entidad UPV: Universitat Politècnica de València. Departamento de Ingeniería Química y Nuclear - Departament d'Enginyeria Química i Nuclear
Fecha difusión:
Resumen:
[EN] The use of cyanide-free complexing agents in brass electroplating has been tested in recent years and EDTA has shown to be a promising alternative. Herein, a rotating disc electrode was used to construct voltammetric ...[+]
Palabras clave: Copper zinc alloys , Brass , Electrodeposition , Non cyanide bath , Rotating disk electrode
Derechos de uso: Cerrado
Fuente:
Journal of Electroanalytical Chemistry. (issn: 1572-6657 )
DOI: 10.1016/j.jelechem.2020.114129
Editorial:
Elsevier
Versión del editor: https://doi.org/10.1016/j.jelechem.2020.114129
Código del Proyecto:
info:eu-repo/grantAgreement/CAPES//001/
info:eu-repo/grantAgreement/CNPq//141346%2F2016-7/
info:eu-repo/grantAgreement/CAPES//88881.190502%2F2018-01/
Agradecimientos:
The authors gratefully acknowledge the financial support given by funding agencies CNPq (Process 141346/2016-7) and CAPES (Process 88881.190502/2018-01). This study was financed in part by the Coordenacao de Aperfeicoamento ...[+]
Tipo: Artículo

References

Ballesteros, J. C., Torres-Martínez, L. M., Juárez-Ramírez, I., Trejo, G., & Meas, Y. (2014). Study of the electrochemical co-reduction of Cu2+ and Zn2+ ions from an alkaline non-cyanide solution containing glycine. Journal of Electroanalytical Chemistry, 727, 104-112. doi:10.1016/j.jelechem.2014.04.020

Ramírez, C., & Calderón, J. A. (2016). Study of the effect of Triethanolamine as a chelating agent in the simultaneous electrodeposition of copper and zinc from non-cyanide electrolytes. Journal of Electroanalytical Chemistry, 765, 132-139. doi:10.1016/j.jelechem.2015.06.003

Vagramyan, T., Leach, J. S. L., & Moon, J. R. (1979). On the problems of electrodepositing brass from non-cyanide electrolytes. Electrochimica Acta, 24(2), 231-236. doi:10.1016/0013-4686(79)80030-4 [+]
Ballesteros, J. C., Torres-Martínez, L. M., Juárez-Ramírez, I., Trejo, G., & Meas, Y. (2014). Study of the electrochemical co-reduction of Cu2+ and Zn2+ ions from an alkaline non-cyanide solution containing glycine. Journal of Electroanalytical Chemistry, 727, 104-112. doi:10.1016/j.jelechem.2014.04.020

Ramírez, C., & Calderón, J. A. (2016). Study of the effect of Triethanolamine as a chelating agent in the simultaneous electrodeposition of copper and zinc from non-cyanide electrolytes. Journal of Electroanalytical Chemistry, 765, 132-139. doi:10.1016/j.jelechem.2015.06.003

Vagramyan, T., Leach, J. S. L., & Moon, J. R. (1979). On the problems of electrodepositing brass from non-cyanide electrolytes. Electrochimica Acta, 24(2), 231-236. doi:10.1016/0013-4686(79)80030-4

Rashwan, S. M. (2007). Electrodeposition of Zn–Cu coatings from alkaline sulphate bath containing glycine. Transactions of the IMF, 85(4), 217-224. doi:10.1179/174591907x216440

Carlos, I. ., & de Almeida, M. R. H. (2004). Study of the influence of the polyalcohol sorbitol on the electrodeposition of copper–zinc films from a non-cyanide bath. Journal of Electroanalytical Chemistry, 562(2), 153-159. doi:10.1016/j.jelechem.2003.08.028

De Almeida, M. R. H., Barbano, E. P., de Carvalho, M. F., Tulio, P. C., & Carlos, I. A. (2015). Copper–zinc electrodeposition in alkaline-sorbitol medium: Electrochemical studies and structural, morphological and chemical composition characterization. Applied Surface Science, 333, 13-22. doi:10.1016/j.apsusc.2015.02.005

De Almeida, M. R. H., Barbano, E. P., Zacarin, M. G., de Brito, M. M., Tulio, P. C., & Carlos, I. A. (2016). Electrodeposition of CuZn films from free-of-cyanide alkaline baths containing EDTA as complexing agent. Surface and Coatings Technology, 287, 103-112. doi:10.1016/j.surfcoat.2015.12.079

De Almeida, M. R. H., Barbano, E. P., de Carvalho, M. F., Carlos, I. A., Siqueira, J. L. P., & Barbosa, L. L. (2011). Electrodeposition of copper–zinc from an alkaline bath based on EDTA. Surface and Coatings Technology, 206(1), 95-102. doi:10.1016/j.surfcoat.2011.06.050

Yurdal, K., & Karahan, İ. H. (2017). A Cyclic Voltammetry Study on Electrodeposition of Cu-Zn Alloy Films: Effect of Ultrasonication Time. Acta Physica Polonica A, 132(3-II), 1087-1090. doi:10.12693/aphyspola.132.1087

Yurdal, K., & Karahan, İ. H. (2017). Phase Formation in Electrodeposited Cu-Zn Alloy Films Produced from Ultrasonicated Solutions. Acta Physica Polonica A, 132(3-II), 1091-1094. doi:10.12693/aphyspola.132.1091

Senna, L. F., Díaz, S. L., & Sathler, L. (2003). Electrodeposition of copper–zinc alloys in pyrophosphate-based electrolytes. Journal of Applied Electrochemistry, 33(12), 1155-1161. doi:10.1023/b:jach.0000003756.11862.6e

Hacıibrahimoğlu, M., Bedir, M., & Yavuz, A. (2016). Structural and Corrosion Study of Uncoated and Zn-Cu Coated Magnesium-Based Alloy. Metals, 6(12), 322. doi:10.3390/met6120322

Despić, A. R., Marinović, V., & Jović, V. D. (1992). Kinetics of deposition and dissolution of brass from the pyrophosphate—oxalate bath. Journal of Electroanalytical Chemistry, 339(1-2), 473-488. doi:10.1016/0022-0728(92)80468-j

Fujiwara, Y., & Enomoto, H. (1988). Characterization of Cu-Zn alloy deposits from glucoheptonate baths. Surface and Coatings Technology, 35(1-2), 113-124. doi:10.1016/0257-8972(88)90062-x

De Filippo, D., Rossi, A., & Atzei, D. (1992). A tartrate-based alloy bath for brass-plated steel wire production. Journal of Applied Electrochemistry, 22(1), 64-72. doi:10.1007/bf01093013

De Vreese, P., Skoczylas, A., Matthijs, E., Fransaer, J., & Binnemans, K. (2013). Electrodeposition of copper–zinc alloys from an ionic liquid-like choline acetate electrolyte. Electrochimica Acta, 108, 788-794. doi:10.1016/j.electacta.2013.06.140

Rousse, C., Beaufils, S., & Fricoteaux, P. (2013). Electrodeposition of Cu–Zn thin films from room temperature ionic liquid. Electrochimica Acta, 107, 624-631. doi:10.1016/j.electacta.2013.06.053

Juškėnas, R., Karpavičienė, V., Pakštas, V., Selskis, A., & Kapočius, V. (2007). Electrochemical and XRD studies of Cu–Zn coatings electrodeposited in solution with d-mannitol. Journal of Electroanalytical Chemistry, 602(2), 237-244. doi:10.1016/j.jelechem.2007.01.004

Barbano, E. P., de Oliveira, G. M., de Carvalho, M. F., & Carlos, I. A. (2014). Copper–tin electrodeposition from an acid solution containing EDTA added. Surface and Coatings Technology, 240, 14-22. doi:10.1016/j.surfcoat.2013.12.005

FASHU, S., GU, C., ZHANG, J., HUANG, M., WANG, X., & TU, J. (2015). Effect of EDTA and NH4Cl additives on electrodeposition of Zn–Ni films from choline chloride-based ionic liquid. Transactions of Nonferrous Metals Society of China, 25(6), 2054-2064. doi:10.1016/s1003-6326(15)63815-8

De Oliveira, G. M., & Carlos, I. A. (2009). Silver–zinc electrodeposition from a thiourea solution with added EDTA or HEDTA. Electrochimica Acta, 54(8), 2155-2163. doi:10.1016/j.electacta.2008.10.012

Barros, K. S., & Espinosa, D. C. R. (2018). Chronopotentiometry of an anion-exchange membrane for treating a synthesized free-cyanide effluent from brass electrodeposition with EDTA as chelating agent. Separation and Purification Technology, 201, 244-255. doi:10.1016/j.seppur.2018.03.013

Gabe, D. R. (2003). Agitation: the most Versatile Degree of Freedom for Surface Finishers. Transactions of the IMF, 81(1), 7-12. doi:10.1080/00202967.2003.11871476

Wei, Z. D., & Chan, S. H. (2004). Electrochemical deposition of PtRu on an uncatalyzed carbon electrode for methanol electrooxidation. Journal of Electroanalytical Chemistry, 569(1), 23-33. doi:10.1016/j.jelechem.2004.01.034

Martí-Calatayud, M. C., Buzzi, D. C., García-Gabaldón, M., Ortega, E., Bernardes, A. M., Tenório, J. A. S., & Pérez-Herranz, V. (2014). Sulfuric acid recovery from acid mine drainage by means of electrodialysis. Desalination, 343, 120-127. doi:10.1016/j.desal.2013.11.031

Barros, K. S., Scarazzato, T., & Espinosa, D. C. R. (2018). Evaluation of the effect of the solution concentration and membrane morphology on the transport properties of Cu(II) through two monopolar cation–exchange membranes. Separation and Purification Technology, 193, 184-192. doi:10.1016/j.seppur.2017.10.067

Tabakovic, I., Riemer, S., Jayaraju, N., Venkatasamy, V., & Gong, J. (2011). Relationship of Fe2+ concentration in solution and current efficiency in electrodeposition of CoFe films. Electrochimica Acta, 58, 25-32. doi:10.1016/j.electacta.2011.08.066

Barbosa, L. L., de Almeida, M. R. H., Carlos, R. M., Yonashiro, M., Oliveira, G. M., & Carlos, I. A. (2005). Study and development of an alkaline bath for copper deposition containing sorbitol as complexing agent and morphological characterization of the copper film. Surface and Coatings Technology, 192(2-3), 145-153. doi:10.1016/j.surfcoat.2004.09.011

Ying, R. Y. (1988). Electrodeposition of Copper‐Nickel Alloys from Citrate Solutions on a Rotating Disk Electrode: I . Experimental Results. Journal of The Electrochemical Society, 135(12), 2957-2964. doi:10.1149/1.2095469

De Almeida, M. R. H., Carlos, I. A., Barbosa, L. L., Carlos, R. M., Lima‐Neto, B. S., & Pallone, E. M. J. A. (2002). Journal of Applied Electrochemistry, 32(7), 763-773. doi:10.1023/a:1020182120035

Losada, J., del Peso, I., & Beyer, L. (1998). Redox and electrocatalytic properties of electrodes modified by films of polypyrrole nickel(II) Schiff-base complexes. Journal of Electroanalytical Chemistry, 447(1-2), 147-154. doi:10.1016/s0022-0728(97)00608-6

Razmi, H., & Azadbakht, A. (2005). Electrochemical characteristics of dopamine oxidation at palladium hexacyanoferrate film, electroless plated on aluminum electrode. Electrochimica Acta, 50(11), 2193-2201. doi:10.1016/j.electacta.2004.10.001

Karahan, İ. H., & Özdemir, R. (2014). Effect of Cu concentration on the formation of Cu1−x Znx shape memory alloy thin films. Applied Surface Science, 318, 100-104. doi:10.1016/j.apsusc.2014.01.119

Özdemir, R., & Karahan, İ. H. (2014). Electrodeposition and properties of Zn, Cu, and Cu1−x Znx thin films. Applied Surface Science, 318, 314-318. doi:10.1016/j.apsusc.2014.06.188

Grujicic, D., & Pesic, B. (2002). Electrodeposition of copper: the nucleation mechanisms. Electrochimica Acta, 47(18), 2901-2912. doi:10.1016/s0013-4686(02)00161-5

Flis-Kabulska, I. (2010). Effect of anodic prepolarization on hydrogen entry into iron at cathodic potentials in 0.1M NaOH without and with EDTA or sodium molybdate. Electrochimica Acta, 55(17), 4895-4901. doi:10.1016/j.electacta.2010.03.084

Özdemir, R., Karahan, İ. H., & Karabulut, O. (2016). A Study on the Electrodeposited Cu-Zn Alloy Thin Films. Metallurgical and Materials Transactions A, 47(11), 5609-5617. doi:10.1007/s11661-016-3715-0

Özdemir, R., & Karahan, İ. H. (2019). Effect of solution Zn concentration on electrodeposition of CuxZn1–x alloys: materials and resistivity characterisation. Transactions of the IMF, 97(2), 95-99. doi:10.1080/00202967.2019.1570738

Dorsch, R. K. (1969). Simultaneous electrodeposition of nickel and hydrogen on a rotating disk electrode. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, 21(3), 495-508. doi:10.1016/s0022-0728(69)80326-8

Gómez, E., & Vallés, E. (1995). Electrodeposition of zinc + cobalt alloys: inhibitory effect of zinc with convection and pH of solution. Journal of Electroanalytical Chemistry, 397(1-2), 177-184. doi:10.1016/0022-0728(95)04195-7

Monev, M., Mirkova, L., Krastev, I., Tsvetkova, H., Rashkov, S., & Richtering, W. (1998). Journal of Applied Electrochemistry, 28(10), 1107-1112. doi:10.1023/a:1003443219874

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem