- -

Evaluation of brass electrodeposition at RDE from cyanide-free bath using EDTA as a complexing agent

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Evaluation of brass electrodeposition at RDE from cyanide-free bath using EDTA as a complexing agent

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Santana Barros, Kayo es_ES
dc.contributor.author Ortega Navarro, Emma María es_ES
dc.contributor.author Pérez-Herranz, Valentín es_ES
dc.contributor.author Romano Espinosa, Denise Crocce es_ES
dc.date.accessioned 2021-09-14T03:33:00Z
dc.date.available 2021-09-14T03:33:00Z
dc.date.issued 2020-05-15 es_ES
dc.identifier.issn 1572-6657 es_ES
dc.identifier.uri http://hdl.handle.net/10251/172296
dc.description.abstract [EN] The use of cyanide-free complexing agents in brass electroplating has been tested in recent years and EDTA has shown to be a promising alternative. Herein, a rotating disc electrode was used to construct voltammetric curves and to evaluate the influence of the rotation speed on the quality of brass electrodepositionwith EDTA on steel. The reference and counter electrodes were made of Ag/AgCl and platinum, respectively. The influence of the galvanostatic/potentiostatic mode, charge density and bath concentration were also studied. By the voltammetric curves and the Koutecky-Levich equation, the diffusion coefficient of copper-EDTA was determined (2.9 x 10(-6) cm(2)/s) and it was verified that the electrodeposition of this metal is controlled bymass transport. For Zn-EDTA deposition, a mixed control (charge and mass transport) was suggested. The agitation generally darkened the deposits due to the hydrogen evolution and lower Cu/Zn proportions. However, for agitated solutions at -1.3 V, very good deposits were obtained with brightness and typical color of brass. Therefore, the operation at -1.3 V with agitation may be more interesting than at higher potentials. Charge densities between 0.5 and 1.0C/cm(2) must be used. Finally, the effluent generatedwas treated, by electrodialysis, and the recovery of the metals and EDTA on the bath was studied. In general, uniform and bright deposits were obtained. es_ES
dc.description.sponsorship The authors gratefully acknowledge the financial support given by funding agencies CNPq (Process 141346/2016-7) and CAPES (Process 88881.190502/2018-01). This study was financed in part by the Coordenacao de Aperfeicoamento de Pessoal de Nivel Superior - Brasil (CAPES) - Finance Code 001. es_ES
dc.language Inglés es_ES
dc.publisher Elsevier es_ES
dc.relation.ispartof Journal of Electroanalytical Chemistry es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Copper zinc alloys es_ES
dc.subject Brass es_ES
dc.subject Electrodeposition es_ES
dc.subject Non cyanide bath es_ES
dc.subject Rotating disk electrode es_ES
dc.subject.classification INGENIERIA QUIMICA es_ES
dc.title Evaluation of brass electrodeposition at RDE from cyanide-free bath using EDTA as a complexing agent es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1016/j.jelechem.2020.114129 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/CAPES//001/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/CNPq//141346%2F2016-7/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/CAPES//88881.190502%2F2018-01/ es_ES
dc.rights.accessRights Cerrado es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Ingeniería Química y Nuclear - Departament d'Enginyeria Química i Nuclear es_ES
dc.description.bibliographicCitation Santana Barros, K.; Ortega Navarro, EM.; Pérez-Herranz, V.; Romano Espinosa, DC. (2020). Evaluation of brass electrodeposition at RDE from cyanide-free bath using EDTA as a complexing agent. Journal of Electroanalytical Chemistry. 865:1-11. https://doi.org/10.1016/j.jelechem.2020.114129 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1016/j.jelechem.2020.114129 es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 11 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 865 es_ES
dc.relation.pasarela S\413599 es_ES
dc.contributor.funder Coordenaçao de Aperfeiçoamento de Pessoal de Nível Superior, Brasil es_ES
dc.contributor.funder Conselho Nacional de Desenvolvimento Científico e Tecnológico, Brasil es_ES
dc.description.references Ballesteros, J. C., Torres-Martínez, L. M., Juárez-Ramírez, I., Trejo, G., & Meas, Y. (2014). Study of the electrochemical co-reduction of Cu2+ and Zn2+ ions from an alkaline non-cyanide solution containing glycine. Journal of Electroanalytical Chemistry, 727, 104-112. doi:10.1016/j.jelechem.2014.04.020 es_ES
dc.description.references Ramírez, C., & Calderón, J. A. (2016). Study of the effect of Triethanolamine as a chelating agent in the simultaneous electrodeposition of copper and zinc from non-cyanide electrolytes. Journal of Electroanalytical Chemistry, 765, 132-139. doi:10.1016/j.jelechem.2015.06.003 es_ES
dc.description.references Vagramyan, T., Leach, J. S. L., & Moon, J. R. (1979). On the problems of electrodepositing brass from non-cyanide electrolytes. Electrochimica Acta, 24(2), 231-236. doi:10.1016/0013-4686(79)80030-4 es_ES
dc.description.references Rashwan, S. M. (2007). Electrodeposition of Zn–Cu coatings from alkaline sulphate bath containing glycine. Transactions of the IMF, 85(4), 217-224. doi:10.1179/174591907x216440 es_ES
dc.description.references Carlos, I. ., & de Almeida, M. R. H. (2004). Study of the influence of the polyalcohol sorbitol on the electrodeposition of copper–zinc films from a non-cyanide bath. Journal of Electroanalytical Chemistry, 562(2), 153-159. doi:10.1016/j.jelechem.2003.08.028 es_ES
dc.description.references De Almeida, M. R. H., Barbano, E. P., de Carvalho, M. F., Tulio, P. C., & Carlos, I. A. (2015). Copper–zinc electrodeposition in alkaline-sorbitol medium: Electrochemical studies and structural, morphological and chemical composition characterization. Applied Surface Science, 333, 13-22. doi:10.1016/j.apsusc.2015.02.005 es_ES
dc.description.references De Almeida, M. R. H., Barbano, E. P., Zacarin, M. G., de Brito, M. M., Tulio, P. C., & Carlos, I. A. (2016). Electrodeposition of CuZn films from free-of-cyanide alkaline baths containing EDTA as complexing agent. Surface and Coatings Technology, 287, 103-112. doi:10.1016/j.surfcoat.2015.12.079 es_ES
dc.description.references De Almeida, M. R. H., Barbano, E. P., de Carvalho, M. F., Carlos, I. A., Siqueira, J. L. P., & Barbosa, L. L. (2011). Electrodeposition of copper–zinc from an alkaline bath based on EDTA. Surface and Coatings Technology, 206(1), 95-102. doi:10.1016/j.surfcoat.2011.06.050 es_ES
dc.description.references Yurdal, K., & Karahan, İ. H. (2017). A Cyclic Voltammetry Study on Electrodeposition of Cu-Zn Alloy Films: Effect of Ultrasonication Time. Acta Physica Polonica A, 132(3-II), 1087-1090. doi:10.12693/aphyspola.132.1087 es_ES
dc.description.references Yurdal, K., & Karahan, İ. H. (2017). Phase Formation in Electrodeposited Cu-Zn Alloy Films Produced from Ultrasonicated Solutions. Acta Physica Polonica A, 132(3-II), 1091-1094. doi:10.12693/aphyspola.132.1091 es_ES
dc.description.references Senna, L. F., Díaz, S. L., & Sathler, L. (2003). Electrodeposition of copper–zinc alloys in pyrophosphate-based electrolytes. Journal of Applied Electrochemistry, 33(12), 1155-1161. doi:10.1023/b:jach.0000003756.11862.6e es_ES
dc.description.references Hacıibrahimoğlu, M., Bedir, M., & Yavuz, A. (2016). Structural and Corrosion Study of Uncoated and Zn-Cu Coated Magnesium-Based Alloy. Metals, 6(12), 322. doi:10.3390/met6120322 es_ES
dc.description.references Despić, A. R., Marinović, V., & Jović, V. D. (1992). Kinetics of deposition and dissolution of brass from the pyrophosphate—oxalate bath. Journal of Electroanalytical Chemistry, 339(1-2), 473-488. doi:10.1016/0022-0728(92)80468-j es_ES
dc.description.references Fujiwara, Y., & Enomoto, H. (1988). Characterization of Cu-Zn alloy deposits from glucoheptonate baths. Surface and Coatings Technology, 35(1-2), 113-124. doi:10.1016/0257-8972(88)90062-x es_ES
dc.description.references De Filippo, D., Rossi, A., & Atzei, D. (1992). A tartrate-based alloy bath for brass-plated steel wire production. Journal of Applied Electrochemistry, 22(1), 64-72. doi:10.1007/bf01093013 es_ES
dc.description.references De Vreese, P., Skoczylas, A., Matthijs, E., Fransaer, J., & Binnemans, K. (2013). Electrodeposition of copper–zinc alloys from an ionic liquid-like choline acetate electrolyte. Electrochimica Acta, 108, 788-794. doi:10.1016/j.electacta.2013.06.140 es_ES
dc.description.references Rousse, C., Beaufils, S., & Fricoteaux, P. (2013). Electrodeposition of Cu–Zn thin films from room temperature ionic liquid. Electrochimica Acta, 107, 624-631. doi:10.1016/j.electacta.2013.06.053 es_ES
dc.description.references Juškėnas, R., Karpavičienė, V., Pakštas, V., Selskis, A., & Kapočius, V. (2007). Electrochemical and XRD studies of Cu–Zn coatings electrodeposited in solution with d-mannitol. Journal of Electroanalytical Chemistry, 602(2), 237-244. doi:10.1016/j.jelechem.2007.01.004 es_ES
dc.description.references Barbano, E. P., de Oliveira, G. M., de Carvalho, M. F., & Carlos, I. A. (2014). Copper–tin electrodeposition from an acid solution containing EDTA added. Surface and Coatings Technology, 240, 14-22. doi:10.1016/j.surfcoat.2013.12.005 es_ES
dc.description.references FASHU, S., GU, C., ZHANG, J., HUANG, M., WANG, X., & TU, J. (2015). Effect of EDTA and NH4Cl additives on electrodeposition of Zn–Ni films from choline chloride-based ionic liquid. Transactions of Nonferrous Metals Society of China, 25(6), 2054-2064. doi:10.1016/s1003-6326(15)63815-8 es_ES
dc.description.references De Oliveira, G. M., & Carlos, I. A. (2009). Silver–zinc electrodeposition from a thiourea solution with added EDTA or HEDTA. Electrochimica Acta, 54(8), 2155-2163. doi:10.1016/j.electacta.2008.10.012 es_ES
dc.description.references Barros, K. S., & Espinosa, D. C. R. (2018). Chronopotentiometry of an anion-exchange membrane for treating a synthesized free-cyanide effluent from brass electrodeposition with EDTA as chelating agent. Separation and Purification Technology, 201, 244-255. doi:10.1016/j.seppur.2018.03.013 es_ES
dc.description.references Gabe, D. R. (2003). Agitation: the most Versatile Degree of Freedom for Surface Finishers. Transactions of the IMF, 81(1), 7-12. doi:10.1080/00202967.2003.11871476 es_ES
dc.description.references Wei, Z. D., & Chan, S. H. (2004). Electrochemical deposition of PtRu on an uncatalyzed carbon electrode for methanol electrooxidation. Journal of Electroanalytical Chemistry, 569(1), 23-33. doi:10.1016/j.jelechem.2004.01.034 es_ES
dc.description.references Martí-Calatayud, M. C., Buzzi, D. C., García-Gabaldón, M., Ortega, E., Bernardes, A. M., Tenório, J. A. S., & Pérez-Herranz, V. (2014). Sulfuric acid recovery from acid mine drainage by means of electrodialysis. Desalination, 343, 120-127. doi:10.1016/j.desal.2013.11.031 es_ES
dc.description.references Barros, K. S., Scarazzato, T., & Espinosa, D. C. R. (2018). Evaluation of the effect of the solution concentration and membrane morphology on the transport properties of Cu(II) through two monopolar cation–exchange membranes. Separation and Purification Technology, 193, 184-192. doi:10.1016/j.seppur.2017.10.067 es_ES
dc.description.references Tabakovic, I., Riemer, S., Jayaraju, N., Venkatasamy, V., & Gong, J. (2011). Relationship of Fe2+ concentration in solution and current efficiency in electrodeposition of CoFe films. Electrochimica Acta, 58, 25-32. doi:10.1016/j.electacta.2011.08.066 es_ES
dc.description.references Barbosa, L. L., de Almeida, M. R. H., Carlos, R. M., Yonashiro, M., Oliveira, G. M., & Carlos, I. A. (2005). Study and development of an alkaline bath for copper deposition containing sorbitol as complexing agent and morphological characterization of the copper film. Surface and Coatings Technology, 192(2-3), 145-153. doi:10.1016/j.surfcoat.2004.09.011 es_ES
dc.description.references Ying, R. Y. (1988). Electrodeposition of Copper‐Nickel Alloys from Citrate Solutions on a Rotating Disk Electrode: I . Experimental Results. Journal of The Electrochemical Society, 135(12), 2957-2964. doi:10.1149/1.2095469 es_ES
dc.description.references De Almeida, M. R. H., Carlos, I. A., Barbosa, L. L., Carlos, R. M., Lima‐Neto, B. S., & Pallone, E. M. J. A. (2002). Journal of Applied Electrochemistry, 32(7), 763-773. doi:10.1023/a:1020182120035 es_ES
dc.description.references Losada, J., del Peso, I., & Beyer, L. (1998). Redox and electrocatalytic properties of electrodes modified by films of polypyrrole nickel(II) Schiff-base complexes. Journal of Electroanalytical Chemistry, 447(1-2), 147-154. doi:10.1016/s0022-0728(97)00608-6 es_ES
dc.description.references Razmi, H., & Azadbakht, A. (2005). Electrochemical characteristics of dopamine oxidation at palladium hexacyanoferrate film, electroless plated on aluminum electrode. Electrochimica Acta, 50(11), 2193-2201. doi:10.1016/j.electacta.2004.10.001 es_ES
dc.description.references Karahan, İ. H., & Özdemir, R. (2014). Effect of Cu concentration on the formation of Cu1−x Znx shape memory alloy thin films. Applied Surface Science, 318, 100-104. doi:10.1016/j.apsusc.2014.01.119 es_ES
dc.description.references Özdemir, R., & Karahan, İ. H. (2014). Electrodeposition and properties of Zn, Cu, and Cu1−x Znx thin films. Applied Surface Science, 318, 314-318. doi:10.1016/j.apsusc.2014.06.188 es_ES
dc.description.references Grujicic, D., & Pesic, B. (2002). Electrodeposition of copper: the nucleation mechanisms. Electrochimica Acta, 47(18), 2901-2912. doi:10.1016/s0013-4686(02)00161-5 es_ES
dc.description.references Flis-Kabulska, I. (2010). Effect of anodic prepolarization on hydrogen entry into iron at cathodic potentials in 0.1M NaOH without and with EDTA or sodium molybdate. Electrochimica Acta, 55(17), 4895-4901. doi:10.1016/j.electacta.2010.03.084 es_ES
dc.description.references Özdemir, R., Karahan, İ. H., & Karabulut, O. (2016). A Study on the Electrodeposited Cu-Zn Alloy Thin Films. Metallurgical and Materials Transactions A, 47(11), 5609-5617. doi:10.1007/s11661-016-3715-0 es_ES
dc.description.references Özdemir, R., & Karahan, İ. H. (2019). Effect of solution Zn concentration on electrodeposition of CuxZn1–x alloys: materials and resistivity characterisation. Transactions of the IMF, 97(2), 95-99. doi:10.1080/00202967.2019.1570738 es_ES
dc.description.references Dorsch, R. K. (1969). Simultaneous electrodeposition of nickel and hydrogen on a rotating disk electrode. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, 21(3), 495-508. doi:10.1016/s0022-0728(69)80326-8 es_ES
dc.description.references Gómez, E., & Vallés, E. (1995). Electrodeposition of zinc + cobalt alloys: inhibitory effect of zinc with convection and pH of solution. Journal of Electroanalytical Chemistry, 397(1-2), 177-184. doi:10.1016/0022-0728(95)04195-7 es_ES
dc.description.references Monev, M., Mirkova, L., Krastev, I., Tsvetkova, H., Rashkov, S., & Richtering, W. (1998). Journal of Applied Electrochemistry, 28(10), 1107-1112. doi:10.1023/a:1003443219874 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem