Mostrar el registro sencillo del ítem
dc.contributor.author | Santana Barros, Kayo | es_ES |
dc.contributor.author | Ortega Navarro, Emma María | es_ES |
dc.contributor.author | Pérez-Herranz, Valentín | es_ES |
dc.contributor.author | Romano Espinosa, Denise Crocce | es_ES |
dc.date.accessioned | 2021-09-14T03:33:00Z | |
dc.date.available | 2021-09-14T03:33:00Z | |
dc.date.issued | 2020-05-15 | es_ES |
dc.identifier.issn | 1572-6657 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/172296 | |
dc.description.abstract | [EN] The use of cyanide-free complexing agents in brass electroplating has been tested in recent years and EDTA has shown to be a promising alternative. Herein, a rotating disc electrode was used to construct voltammetric curves and to evaluate the influence of the rotation speed on the quality of brass electrodepositionwith EDTA on steel. The reference and counter electrodes were made of Ag/AgCl and platinum, respectively. The influence of the galvanostatic/potentiostatic mode, charge density and bath concentration were also studied. By the voltammetric curves and the Koutecky-Levich equation, the diffusion coefficient of copper-EDTA was determined (2.9 x 10(-6) cm(2)/s) and it was verified that the electrodeposition of this metal is controlled bymass transport. For Zn-EDTA deposition, a mixed control (charge and mass transport) was suggested. The agitation generally darkened the deposits due to the hydrogen evolution and lower Cu/Zn proportions. However, for agitated solutions at -1.3 V, very good deposits were obtained with brightness and typical color of brass. Therefore, the operation at -1.3 V with agitation may be more interesting than at higher potentials. Charge densities between 0.5 and 1.0C/cm(2) must be used. Finally, the effluent generatedwas treated, by electrodialysis, and the recovery of the metals and EDTA on the bath was studied. In general, uniform and bright deposits were obtained. | es_ES |
dc.description.sponsorship | The authors gratefully acknowledge the financial support given by funding agencies CNPq (Process 141346/2016-7) and CAPES (Process 88881.190502/2018-01). This study was financed in part by the Coordenacao de Aperfeicoamento de Pessoal de Nivel Superior - Brasil (CAPES) - Finance Code 001. | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | Elsevier | es_ES |
dc.relation.ispartof | Journal of Electroanalytical Chemistry | es_ES |
dc.rights | Reserva de todos los derechos | es_ES |
dc.subject | Copper zinc alloys | es_ES |
dc.subject | Brass | es_ES |
dc.subject | Electrodeposition | es_ES |
dc.subject | Non cyanide bath | es_ES |
dc.subject | Rotating disk electrode | es_ES |
dc.subject.classification | INGENIERIA QUIMICA | es_ES |
dc.title | Evaluation of brass electrodeposition at RDE from cyanide-free bath using EDTA as a complexing agent | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1016/j.jelechem.2020.114129 | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/CAPES//001/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/CNPq//141346%2F2016-7/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/CAPES//88881.190502%2F2018-01/ | es_ES |
dc.rights.accessRights | Cerrado | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Ingeniería Química y Nuclear - Departament d'Enginyeria Química i Nuclear | es_ES |
dc.description.bibliographicCitation | Santana Barros, K.; Ortega Navarro, EM.; Pérez-Herranz, V.; Romano Espinosa, DC. (2020). Evaluation of brass electrodeposition at RDE from cyanide-free bath using EDTA as a complexing agent. Journal of Electroanalytical Chemistry. 865:1-11. https://doi.org/10.1016/j.jelechem.2020.114129 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.1016/j.jelechem.2020.114129 | es_ES |
dc.description.upvformatpinicio | 1 | es_ES |
dc.description.upvformatpfin | 11 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 865 | es_ES |
dc.relation.pasarela | S\413599 | es_ES |
dc.contributor.funder | Coordenaçao de Aperfeiçoamento de Pessoal de Nível Superior, Brasil | es_ES |
dc.contributor.funder | Conselho Nacional de Desenvolvimento Científico e Tecnológico, Brasil | es_ES |
dc.description.references | Ballesteros, J. C., Torres-Martínez, L. M., Juárez-Ramírez, I., Trejo, G., & Meas, Y. (2014). Study of the electrochemical co-reduction of Cu2+ and Zn2+ ions from an alkaline non-cyanide solution containing glycine. Journal of Electroanalytical Chemistry, 727, 104-112. doi:10.1016/j.jelechem.2014.04.020 | es_ES |
dc.description.references | Ramírez, C., & Calderón, J. A. (2016). Study of the effect of Triethanolamine as a chelating agent in the simultaneous electrodeposition of copper and zinc from non-cyanide electrolytes. Journal of Electroanalytical Chemistry, 765, 132-139. doi:10.1016/j.jelechem.2015.06.003 | es_ES |
dc.description.references | Vagramyan, T., Leach, J. S. L., & Moon, J. R. (1979). On the problems of electrodepositing brass from non-cyanide electrolytes. Electrochimica Acta, 24(2), 231-236. doi:10.1016/0013-4686(79)80030-4 | es_ES |
dc.description.references | Rashwan, S. M. (2007). Electrodeposition of Zn–Cu coatings from alkaline sulphate bath containing glycine. Transactions of the IMF, 85(4), 217-224. doi:10.1179/174591907x216440 | es_ES |
dc.description.references | Carlos, I. ., & de Almeida, M. R. H. (2004). Study of the influence of the polyalcohol sorbitol on the electrodeposition of copper–zinc films from a non-cyanide bath. Journal of Electroanalytical Chemistry, 562(2), 153-159. doi:10.1016/j.jelechem.2003.08.028 | es_ES |
dc.description.references | De Almeida, M. R. H., Barbano, E. P., de Carvalho, M. F., Tulio, P. C., & Carlos, I. A. (2015). Copper–zinc electrodeposition in alkaline-sorbitol medium: Electrochemical studies and structural, morphological and chemical composition characterization. Applied Surface Science, 333, 13-22. doi:10.1016/j.apsusc.2015.02.005 | es_ES |
dc.description.references | De Almeida, M. R. H., Barbano, E. P., Zacarin, M. G., de Brito, M. M., Tulio, P. C., & Carlos, I. A. (2016). Electrodeposition of CuZn films from free-of-cyanide alkaline baths containing EDTA as complexing agent. Surface and Coatings Technology, 287, 103-112. doi:10.1016/j.surfcoat.2015.12.079 | es_ES |
dc.description.references | De Almeida, M. R. H., Barbano, E. P., de Carvalho, M. F., Carlos, I. A., Siqueira, J. L. P., & Barbosa, L. L. (2011). Electrodeposition of copper–zinc from an alkaline bath based on EDTA. Surface and Coatings Technology, 206(1), 95-102. doi:10.1016/j.surfcoat.2011.06.050 | es_ES |
dc.description.references | Yurdal, K., & Karahan, İ. H. (2017). A Cyclic Voltammetry Study on Electrodeposition of Cu-Zn Alloy Films: Effect of Ultrasonication Time. Acta Physica Polonica A, 132(3-II), 1087-1090. doi:10.12693/aphyspola.132.1087 | es_ES |
dc.description.references | Yurdal, K., & Karahan, İ. H. (2017). Phase Formation in Electrodeposited Cu-Zn Alloy Films Produced from Ultrasonicated Solutions. Acta Physica Polonica A, 132(3-II), 1091-1094. doi:10.12693/aphyspola.132.1091 | es_ES |
dc.description.references | Senna, L. F., Díaz, S. L., & Sathler, L. (2003). Electrodeposition of copper–zinc alloys in pyrophosphate-based electrolytes. Journal of Applied Electrochemistry, 33(12), 1155-1161. doi:10.1023/b:jach.0000003756.11862.6e | es_ES |
dc.description.references | Hacıibrahimoğlu, M., Bedir, M., & Yavuz, A. (2016). Structural and Corrosion Study of Uncoated and Zn-Cu Coated Magnesium-Based Alloy. Metals, 6(12), 322. doi:10.3390/met6120322 | es_ES |
dc.description.references | Despić, A. R., Marinović, V., & Jović, V. D. (1992). Kinetics of deposition and dissolution of brass from the pyrophosphate—oxalate bath. Journal of Electroanalytical Chemistry, 339(1-2), 473-488. doi:10.1016/0022-0728(92)80468-j | es_ES |
dc.description.references | Fujiwara, Y., & Enomoto, H. (1988). Characterization of Cu-Zn alloy deposits from glucoheptonate baths. Surface and Coatings Technology, 35(1-2), 113-124. doi:10.1016/0257-8972(88)90062-x | es_ES |
dc.description.references | De Filippo, D., Rossi, A., & Atzei, D. (1992). A tartrate-based alloy bath for brass-plated steel wire production. Journal of Applied Electrochemistry, 22(1), 64-72. doi:10.1007/bf01093013 | es_ES |
dc.description.references | De Vreese, P., Skoczylas, A., Matthijs, E., Fransaer, J., & Binnemans, K. (2013). Electrodeposition of copper–zinc alloys from an ionic liquid-like choline acetate electrolyte. Electrochimica Acta, 108, 788-794. doi:10.1016/j.electacta.2013.06.140 | es_ES |
dc.description.references | Rousse, C., Beaufils, S., & Fricoteaux, P. (2013). Electrodeposition of Cu–Zn thin films from room temperature ionic liquid. Electrochimica Acta, 107, 624-631. doi:10.1016/j.electacta.2013.06.053 | es_ES |
dc.description.references | Juškėnas, R., Karpavičienė, V., Pakštas, V., Selskis, A., & Kapočius, V. (2007). Electrochemical and XRD studies of Cu–Zn coatings electrodeposited in solution with d-mannitol. Journal of Electroanalytical Chemistry, 602(2), 237-244. doi:10.1016/j.jelechem.2007.01.004 | es_ES |
dc.description.references | Barbano, E. P., de Oliveira, G. M., de Carvalho, M. F., & Carlos, I. A. (2014). Copper–tin electrodeposition from an acid solution containing EDTA added. Surface and Coatings Technology, 240, 14-22. doi:10.1016/j.surfcoat.2013.12.005 | es_ES |
dc.description.references | FASHU, S., GU, C., ZHANG, J., HUANG, M., WANG, X., & TU, J. (2015). Effect of EDTA and NH4Cl additives on electrodeposition of Zn–Ni films from choline chloride-based ionic liquid. Transactions of Nonferrous Metals Society of China, 25(6), 2054-2064. doi:10.1016/s1003-6326(15)63815-8 | es_ES |
dc.description.references | De Oliveira, G. M., & Carlos, I. A. (2009). Silver–zinc electrodeposition from a thiourea solution with added EDTA or HEDTA. Electrochimica Acta, 54(8), 2155-2163. doi:10.1016/j.electacta.2008.10.012 | es_ES |
dc.description.references | Barros, K. S., & Espinosa, D. C. R. (2018). Chronopotentiometry of an anion-exchange membrane for treating a synthesized free-cyanide effluent from brass electrodeposition with EDTA as chelating agent. Separation and Purification Technology, 201, 244-255. doi:10.1016/j.seppur.2018.03.013 | es_ES |
dc.description.references | Gabe, D. R. (2003). Agitation: the most Versatile Degree of Freedom for Surface Finishers. Transactions of the IMF, 81(1), 7-12. doi:10.1080/00202967.2003.11871476 | es_ES |
dc.description.references | Wei, Z. D., & Chan, S. H. (2004). Electrochemical deposition of PtRu on an uncatalyzed carbon electrode for methanol electrooxidation. Journal of Electroanalytical Chemistry, 569(1), 23-33. doi:10.1016/j.jelechem.2004.01.034 | es_ES |
dc.description.references | Martí-Calatayud, M. C., Buzzi, D. C., García-Gabaldón, M., Ortega, E., Bernardes, A. M., Tenório, J. A. S., & Pérez-Herranz, V. (2014). Sulfuric acid recovery from acid mine drainage by means of electrodialysis. Desalination, 343, 120-127. doi:10.1016/j.desal.2013.11.031 | es_ES |
dc.description.references | Barros, K. S., Scarazzato, T., & Espinosa, D. C. R. (2018). Evaluation of the effect of the solution concentration and membrane morphology on the transport properties of Cu(II) through two monopolar cation–exchange membranes. Separation and Purification Technology, 193, 184-192. doi:10.1016/j.seppur.2017.10.067 | es_ES |
dc.description.references | Tabakovic, I., Riemer, S., Jayaraju, N., Venkatasamy, V., & Gong, J. (2011). Relationship of Fe2+ concentration in solution and current efficiency in electrodeposition of CoFe films. Electrochimica Acta, 58, 25-32. doi:10.1016/j.electacta.2011.08.066 | es_ES |
dc.description.references | Barbosa, L. L., de Almeida, M. R. H., Carlos, R. M., Yonashiro, M., Oliveira, G. M., & Carlos, I. A. (2005). Study and development of an alkaline bath for copper deposition containing sorbitol as complexing agent and morphological characterization of the copper film. Surface and Coatings Technology, 192(2-3), 145-153. doi:10.1016/j.surfcoat.2004.09.011 | es_ES |
dc.description.references | Ying, R. Y. (1988). Electrodeposition of Copper‐Nickel Alloys from Citrate Solutions on a Rotating Disk Electrode: I . Experimental Results. Journal of The Electrochemical Society, 135(12), 2957-2964. doi:10.1149/1.2095469 | es_ES |
dc.description.references | De Almeida, M. R. H., Carlos, I. A., Barbosa, L. L., Carlos, R. M., Lima‐Neto, B. S., & Pallone, E. M. J. A. (2002). Journal of Applied Electrochemistry, 32(7), 763-773. doi:10.1023/a:1020182120035 | es_ES |
dc.description.references | Losada, J., del Peso, I., & Beyer, L. (1998). Redox and electrocatalytic properties of electrodes modified by films of polypyrrole nickel(II) Schiff-base complexes. Journal of Electroanalytical Chemistry, 447(1-2), 147-154. doi:10.1016/s0022-0728(97)00608-6 | es_ES |
dc.description.references | Razmi, H., & Azadbakht, A. (2005). Electrochemical characteristics of dopamine oxidation at palladium hexacyanoferrate film, electroless plated on aluminum electrode. Electrochimica Acta, 50(11), 2193-2201. doi:10.1016/j.electacta.2004.10.001 | es_ES |
dc.description.references | Karahan, İ. H., & Özdemir, R. (2014). Effect of Cu concentration on the formation of Cu1−x Znx shape memory alloy thin films. Applied Surface Science, 318, 100-104. doi:10.1016/j.apsusc.2014.01.119 | es_ES |
dc.description.references | Özdemir, R., & Karahan, İ. H. (2014). Electrodeposition and properties of Zn, Cu, and Cu1−x Znx thin films. Applied Surface Science, 318, 314-318. doi:10.1016/j.apsusc.2014.06.188 | es_ES |
dc.description.references | Grujicic, D., & Pesic, B. (2002). Electrodeposition of copper: the nucleation mechanisms. Electrochimica Acta, 47(18), 2901-2912. doi:10.1016/s0013-4686(02)00161-5 | es_ES |
dc.description.references | Flis-Kabulska, I. (2010). Effect of anodic prepolarization on hydrogen entry into iron at cathodic potentials in 0.1M NaOH without and with EDTA or sodium molybdate. Electrochimica Acta, 55(17), 4895-4901. doi:10.1016/j.electacta.2010.03.084 | es_ES |
dc.description.references | Özdemir, R., Karahan, İ. H., & Karabulut, O. (2016). A Study on the Electrodeposited Cu-Zn Alloy Thin Films. Metallurgical and Materials Transactions A, 47(11), 5609-5617. doi:10.1007/s11661-016-3715-0 | es_ES |
dc.description.references | Özdemir, R., & Karahan, İ. H. (2019). Effect of solution Zn concentration on electrodeposition of CuxZn1–x alloys: materials and resistivity characterisation. Transactions of the IMF, 97(2), 95-99. doi:10.1080/00202967.2019.1570738 | es_ES |
dc.description.references | Dorsch, R. K. (1969). Simultaneous electrodeposition of nickel and hydrogen on a rotating disk electrode. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, 21(3), 495-508. doi:10.1016/s0022-0728(69)80326-8 | es_ES |
dc.description.references | Gómez, E., & Vallés, E. (1995). Electrodeposition of zinc + cobalt alloys: inhibitory effect of zinc with convection and pH of solution. Journal of Electroanalytical Chemistry, 397(1-2), 177-184. doi:10.1016/0022-0728(95)04195-7 | es_ES |
dc.description.references | Monev, M., Mirkova, L., Krastev, I., Tsvetkova, H., Rashkov, S., & Richtering, W. (1998). Journal of Applied Electrochemistry, 28(10), 1107-1112. doi:10.1023/a:1003443219874 | es_ES |