Caprioli, F., Decker, F., & Castro, V. D. (2011). Durable Cu corrosion inhibition in acidic solution by SAMs of Benzenethiol. Journal of Electroanalytical Chemistry, 657(1-2), 192-195. doi:10.1016/j.jelechem.2011.03.034
Neodo, S., Carugo, D., Wharton, J. A., & Stokes, K. R. (2013). Electrochemical behaviour of nickel–aluminium bronze in chloride media: Influence of pH and benzotriazole. Journal of Electroanalytical Chemistry, 695, 38-46. doi:10.1016/j.jelechem.2013.02.007
Romeiro, A., Gouveia-Caridade, C., & Brett, C. M. A. (2013). Polyphenazine films as inhibitors of copper corrosion. Journal of Electroanalytical Chemistry, 688, 282-288. doi:10.1016/j.jelechem.2012.07.033
[+]
Caprioli, F., Decker, F., & Castro, V. D. (2011). Durable Cu corrosion inhibition in acidic solution by SAMs of Benzenethiol. Journal of Electroanalytical Chemistry, 657(1-2), 192-195. doi:10.1016/j.jelechem.2011.03.034
Neodo, S., Carugo, D., Wharton, J. A., & Stokes, K. R. (2013). Electrochemical behaviour of nickel–aluminium bronze in chloride media: Influence of pH and benzotriazole. Journal of Electroanalytical Chemistry, 695, 38-46. doi:10.1016/j.jelechem.2013.02.007
Romeiro, A., Gouveia-Caridade, C., & Brett, C. M. A. (2013). Polyphenazine films as inhibitors of copper corrosion. Journal of Electroanalytical Chemistry, 688, 282-288. doi:10.1016/j.jelechem.2012.07.033
Krishnaveni, K., & Ravichandran, J. (2014). Influence of aqueous extract of leaves of Morinda tinctoria on copper corrosion in HCl medium. Journal of Electroanalytical Chemistry, 735, 24-31. doi:10.1016/j.jelechem.2014.09.032
Rahal, C., Masmoudi, M., Abdelhedi, R., Sabot, R., Jeannin, M., Bouaziz, M., & Refait, P. (2016). Olive leaf extract as natural corrosion inhibitor for pure copper in 0.5 M NaCl solution: A study by voltammetry around OCP. Journal of Electroanalytical Chemistry, 769, 53-61. doi:10.1016/j.jelechem.2016.03.010
Bertrand, G., Rocca, E., Savall, C., Rapin, C., Labrune, J.-C., & Steinmetz, P. (2000). In-situ electrochemical atomic force microscopy studies of aqueous corrosion and inhibition of copper. Journal of Electroanalytical Chemistry, 489(1-2), 38-45. doi:10.1016/s0022-0728(00)00163-7
Xu, A., Dong, C., Wei, X., Li, X., & Macdonald, D. D. (2019). DFT and photoelectrochemical studies of point defects in passive films on copper. Journal of Electroanalytical Chemistry, 834, 216-222. doi:10.1016/j.jelechem.2018.12.033
Beldjoudi, T., Bardet, F., Lacoudre, N., Andrieu, S., Adriaens, A., Constantinides, I., & Brunella, P. (2001). Surface Modification Processes on European Union Bronze Reference Materials for Analytical Studies of Cultural Artefacts. Surface Engineering, 17(3), 231-235. doi:10.1179/026708401101517845
Constantinides, I., Adriaens, A., & Adams, F. (2002). Surface characterization of artificial corrosion layers on copper alloy reference materials. Applied Surface Science, 189(1-2), 90-101. doi:10.1016/s0169-4332(02)00005-3
Di Carlo, G., Giuliani, C., Riccucci, C., Pascucci, M., Messina, E., Fierro, G., … Ingo, G. M. (2017). Artificial patina formation onto copper-based alloys: Chloride and sulphate induced corrosion processes. Applied Surface Science, 421, 120-127. doi:10.1016/j.apsusc.2017.01.080
Fitzgerald, K. P., Nairn, J., & Atrens, A. (1998). The chemistry of copper patination. Corrosion Science, 40(12), 2029-2050. doi:10.1016/s0010-938x(98)00093-6
Masi, G., Esvan, J., Josse, C., Chiavari, C., Bernardi, E., Martini, C., … Robbiola, L. (2017). Characterization of typical patinas simulating bronze corrosion in outdoor conditions. Materials Chemistry and Physics, 200, 308-321. doi:10.1016/j.matchemphys.2017.07.091
Marušić, K., Otmačić-Ćurković, H., Horvat-Kurbegović, Š., Takenouti, H., & Stupnišek-Lisac, E. (2009). Comparative studies of chemical and electrochemical preparation of artificial bronze patinas and their protection by corrosion inhibitor. Electrochimica Acta, 54(27), 7106-7113. doi:10.1016/j.electacta.2009.07.014
Kosec, T., Ćurković, H. O., & Legat, A. (2010). Investigation of the corrosion protection of chemically and electrochemically formed patinas on recent bronze. Electrochimica Acta, 56(2), 722-731. doi:10.1016/j.electacta.2010.09.093
Rosales, B. M., Vera, R. M., & Hidalgo, J. P. (2010). Characterisation and properties of synthetic patina on copper base sculptural alloys. Corrosion Science, 52(10), 3212-3224. doi:10.1016/j.corsci.2010.05.034
Muller, J., Lorang, G., Leroy, E., Laik, B., & Guillot, I. (2010). Electrochemically synthesised bronze patina: characterisation and application to the cultural heritage. Corrosion Engineering, Science and Technology, 45(5), 322-326. doi:10.1179/147842210x12692706339265
Rosales, B., Vera, R., & Moriena, G. (1999). Evaluation of the protective properties of natural and artificial patinas on copper. Part I. Patinas formed by immersion. Corrosion Science, 41(4), 625-651. doi:10.1016/s0010-938x(98)00108-5
Casanova Municchia, A., Bellatreccia, F., D’Ercoli, G., Lo Mastro, S., Reho, I., Ricci, M. A., & Sodo, A. (2016). Characterisation of artificial patinas on bronze sculptures of the Carlo Bilotti Museum (Rome). Applied Physics A, 122(12). doi:10.1007/s00339-016-0551-4
Hayez, V., Segato, T., Hubin, A., & Terryn, H. (2006). Study of copper nitrate-based patinas. Journal of Raman Spectroscopy, 37(10), 1211-1220. doi:10.1002/jrs.1591
Hayez, V., Costa, V., Guillaume, J., Terryn, H., & Hubin, A. (2005). Micro Raman spectroscopy used for the study of corrosion products on copper alloys: study of the chemical composition of artificial patinas used for restoration purposes. The Analyst, 130(4), 550. doi:10.1039/b419080g
Cano, E., Polo, J. L., La Iglesia, A., & Bastidas, J. M. (2005). Rate control for copper tarnishing. Corrosion Science, 47(4), 977-987. doi:10.1016/j.corsci.2004.06.026
Bernard, M. C., & Joiret, S. (2009). Understanding corrosion of ancient metals for the conservation of cultural heritage. Electrochimica Acta, 54(22), 5199-5205. doi:10.1016/j.electacta.2009.01.036
Franceschi, E., Letardi, P., & Luciano, G. (2006). Colour measurements on patinas and coating system for outdoor bronze monuments. Journal of Cultural Heritage, 7(3), 166-170. doi:10.1016/j.culher.2006.03.001
Chiavari, C., Rahmouni, K., Takenouti, H., Joiret, S., Vermaut, P., & Robbiola, L. (2007). Composition and electrochemical properties of natural patinas of outdoor bronze monuments. Electrochimica Acta, 52(27), 7760-7769. doi:10.1016/j.electacta.2006.12.053
Goidanich, S., Brunk, J., Herting, G., Arenas, M. A., & Odnevall Wallinder, I. (2011). Atmospheric corrosion of brass in outdoor applications. Science of The Total Environment, 412-413, 46-57. doi:10.1016/j.scitotenv.2011.09.083
F. Scholz, B. Meyer, B. Voltammetry of solid microparticles immobilized on electrode surfaces, Electroanalytical Chemistry, A Series of Advances, A.J. Bard, I. Rubinstein, Eds., Marcel Dekker, New York, 1998, vol. 20, pp. 1–86.
Doménech-Carbó, A., Labuda, J., & Scholz, F. (2012). Electroanalytical chemistry for the analysis of solids: Characterization and classification (IUPAC Technical Report). Pure and Applied Chemistry, 85(3), 609-631. doi:10.1351/pac-rep-11-11-13
Costa, V., Leyssens, K., Adriaens, A., Richard, N., & Scholz, F. (2009). Electrochemistry reveals archaeological materials. Journal of Solid State Electrochemistry, 14(3), 449-451. doi:10.1007/s10008-009-0864-8
Šatović, D., Martinez, S., & Bobrowski, A. (2010). Electrochemical identification of corrosion products on historical and archaeological bronzes using the voltammetry of micro-particles attached to a carbon paste electrode. Talanta, 81(4-5), 1760-1765. doi:10.1016/j.talanta.2010.03.037
Arjmand, F., & Adriaens, A. (2011). Electrochemical quantification of copper-based alloys using voltammetry of microparticles: optimization of the experimental conditions. Journal of Solid State Electrochemistry, 16(2), 535-543. doi:10.1007/s10008-011-1365-0
Souissi, N., Bousselmi, L., Khosrof, S., & Triki, E. (2004). Voltammetric behaviour of an archeaological bronze alloy in aqueous chloride media. Materials and Corrosion, 55(4), 284-292. doi:10.1002/maco.200303719
Serghini-Idrissi, M., Bernard, M. C., Harrif, F. Z., Joiret, S., Rahmouni, K., Srhiri, A., … Ziani, M. (2005). Electrochemical and spectroscopic characterizations of patinas formed on an archaeological bronze coin. Electrochimica Acta, 50(24), 4699-4709. doi:10.1016/j.electacta.2005.01.050
Doménech-Carbó, A., Doménech-Carbó, M. T., Montagna, E., Álvarez-Romero, C., & Lee, Y. (2017). Electrochemical discrimination of mints: The last Chinese emperors Kuang Hsü and Hsüan T’ung monetary unification. Talanta, 169, 50-56. doi:10.1016/j.talanta.2017.03.025
Doménech-Carbó, A., Doménech-Carbó, M. T., Capelo, S., Pasíes, T., & Martínez-Lázaro, I. (2014). Dating Archaeological Copper/Bronze Artifacts by Using the Voltammetry of Microparticles. Angewandte Chemie International Edition, 53(35), 9262-9266. doi:10.1002/anie.201404522
Doménech, A., Doménech-Carbó, M. T., & Edwards, H. G. M. (2008). Quantitation from Tafel Analysis in Solid-State Voltammetry. Application to the Study of Cobalt and Copper Pigments in Severely Damaged Frescoes. Analytical Chemistry, 80(8), 2704-2716. doi:10.1021/ac7024333
Niaura, G. (2000). Surface-enhanced Raman spectroscopic observation of two kinds of adsorbed OH− ions at copper electrode. Electrochimica Acta, 45(21), 3507-3519. doi:10.1016/s0013-4686(00)00434-5
Basso, E., Invernizzi, C., Malagodi, M., La Russa, M. F., Bersani, D., & Lottici, P. P. (2014). Characterization of colorants and opacifiers in roman glass mosaictesseraethrough spectroscopic and spectrometric techniques. Journal of Raman Spectroscopy, 45(3), 238-245. doi:10.1002/jrs.4449
Keturakis, C. J., Notis, B., Blenheim, A., Miller, A. C., Pafchek, R., Notis, M. R., & Wachs, I. E. (2016). Analysis of corrosion layers in ancient Roman silver coins with high resolution surface spectroscopic techniques. Applied Surface Science, 376, 241-251. doi:10.1016/j.apsusc.2016.03.009
Stein, H., Naujoks, D., Grochla, D., Khare, C., Gutkowski, R., Grützke, S., … Ludwig, A. (2015). A structure zone diagram obtained by simultaneous deposition on a novel step heater: A case study for Cu2O thin films. physica status solidi (a), 212(12), 2798-2804. doi:10.1002/pssa.201532384
Yoder, C. H., Bushong, E., Liu, X., Weidner, V., McWilliams, P., Martin, K., … Schaeffer, R. W. (2010). The synthesis and solubility of the copper hydroxyl nitrates: gerhardtite, rouaite and likasite. Mineralogical Magazine, 74(3), 433-440. doi:10.1180/minmag.2010.074.3.433
Bracci, S., Cagnini, A., Colombini, M. P., Cuzman, O. A., Fratini, F., Galeotti, M., … Tiano, P. (2016). A multi-analytical approach to monitor three outdoor contemporary artworks at the Gori Collection (Fattoria di Celle, Santomato, Pistoia, Italy). Microchemical Journal, 124, 878-888. doi:10.1016/j.microc.2015.07.008
Yang, Y. J., & Hu, S. (2007). A facile electrochemical synthesis of covellite nanomaterials at room temperature. Journal of Solid State Electrochemistry, 12(11), 1405-1410. doi:10.1007/s10008-007-0481-3
Kalimuldina, G., & Taniguchi, I. (2017). Electrochemical characterization of non-stoichiometric Cu2S
x
cathode for lithium batteries. Journal of Solid State Electrochemistry, 21(10), 3057-3063. doi:10.1007/s10008-017-3625-0
Bouchard, M., & Smith, D. C. (2003). Catalogue of 45 reference Raman spectra of minerals concerning research in art history or archaeology, especially on corroded metals and coloured glass. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 59(10), 2247-2266. doi:10.1016/s1386-1425(03)00069-6
Frost, R. L. (2003). Raman spectroscopy of selected copper minerals of significance in corrosion. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 59(6), 1195-1204. doi:10.1016/s1386-1425(02)00315-3
Jouen, S., Jean, M., & Hannoyer, B. (2000). Simultaneous copper runoff and copper surface analysis in an outdoor area. Surface and Interface Analysis, 30(1), 145-148. doi:10.1002/1096-9918(200008)30:1<145::aid-sia825>3.0.co;2-c
Robbiola, L., Blengino, J.-M., & Fiaud, C. (1998). Morphology and mechanisms of formation of natural patinas on archaeological Cu–Sn alloys. Corrosion Science, 40(12), 2083-2111. doi:10.1016/s0010-938x(98)00096-1
Robbiola, L., & Portier, R. (2006). A global approach to the authentication of ancient bronzes based on the characterization of the alloy–patina–environment system. Journal of Cultural Heritage, 7(1), 1-12. doi:10.1016/j.culher.2005.11.001
Doménech, A., Doménech-Carbó, M. T., & Martínez-Lázaro, I. (2010). Layer-by-layer identification of copper alteration products in metallic works of art using the voltammetry of microparticles. Analytica Chimica Acta, 680(1-2), 1-9. doi:10.1016/j.aca.2010.09.002
López‐Delgado, A., Cano, E., Bastidas, J. M., & López, F. A. (1998). A Laboratory Study of the Effect of Acetic Acid Vapor on Atmospheric Copper Corrosion. Journal of The Electrochemical Society, 145(12), 4140-4147. doi:10.1149/1.1838928
J. M. Bastidas, A. López-Delgado, E. Cano, J. L. Polo y F. A. López. Copper corrosion mechanism in the presence of formic acid vapor for short exposure times. J. Electrochem. Soc., 147 (2000) 999–1005.
Doménech-Carbó, A., Doménech-Carbó, M. T., Redondo-Marugán, J., Osete-Cortina, L., & Vivancos-Ramón, M. V. (2015). Electrochemical Characterization of Corrosion Products in Leaded Bronze Sculptures Considering Ohmic Drop Effects on Tafel Analysis. Electroanalysis, 28(4), 833-845. doi:10.1002/elan.201500613
[-]