- -

Closed injective ideals of multilinear operators, related measures and interpolation

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Closed injective ideals of multilinear operators, related measures and interpolation

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Manzano, Antonio es_ES
dc.contributor.author Rueda, Pilar es_ES
dc.contributor.author Sánchez Pérez, Enrique Alfonso es_ES
dc.date.accessioned 2021-09-14T03:33:18Z
dc.date.available 2021-09-14T03:33:18Z
dc.date.issued 2020-03 es_ES
dc.identifier.issn 0025-584X es_ES
dc.identifier.uri http://hdl.handle.net/10251/172305
dc.description This is the peer reviewed version of the following article: Manzano, A, Rueda, P, Sánchez-Pérez, EA. Closed injective ideals of multilinear operators, related measures and interpolation. Mathematische Nachrichten. 2020; 293: 510-532, which has been published in final form at https://doi.org/10.1002/mana.201800415. This article may be used for non-commercial purposes in accordance with Wiley Terms and Conditions for Self-Archiving. es_ES
dc.description.abstract [EN] We introduce and discuss several ways of extending the inner measure arisen from the closed injective hull of an ideal of linear operators to the multilinear case. In particular, we consider new measures that allow to characterize the operators that belong to a closed injective ideal of multilinear operators as those having measure equal to zero. Some interpolation formulas for these measures, and consequently interpolation results involving ideals of multilinear operators, are established. Examples and applications related to summing multilinear operators are also shown. es_ES
dc.description.sponsorship Ministerio de Economia, Industria y Competitividad and FEDER, Grant/Award Numbers: MTM2016-77054-C2-1-P, MTM2017-84058-P es_ES
dc.language Inglés es_ES
dc.publisher John Wiley & Sons es_ES
dc.relation.ispartof Mathematische Nachrichten es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Closed ideal es_ES
dc.subject Ideal of multilinear operators es_ES
dc.subject Injective ideal es_ES
dc.subject Interpolation es_ES
dc.subject Measure associated to an ideal es_ES
dc.subject.classification MATEMATICA APLICADA es_ES
dc.title Closed injective ideals of multilinear operators, related measures and interpolation es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1002/mana.201800415 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2013-2016/MTM2017-84058-P/ES/INTERPOLACION, ESPACIOS DE FUNCIONES Y COMPACIDAD DE OPERADORES/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//MTM2016-77054-C2-1-P/ES/ANALISIS NO LINEAL, INTEGRACION VECTORIAL Y APLICACIONES EN CIENCIAS DE LA INFORMACION/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Matemática Aplicada - Departament de Matemàtica Aplicada es_ES
dc.description.bibliographicCitation Manzano, A.; Rueda, P.; Sánchez Pérez, EA. (2020). Closed injective ideals of multilinear operators, related measures and interpolation. Mathematische Nachrichten. 293(3):510-532. https://doi.org/10.1002/mana.201800415 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1002/mana.201800415 es_ES
dc.description.upvformatpinicio 510 es_ES
dc.description.upvformatpfin 532 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 293 es_ES
dc.description.issue 3 es_ES
dc.relation.pasarela S\424068 es_ES
dc.contributor.funder Agencia Estatal de Investigación es_ES
dc.contributor.funder European Regional Development Fund es_ES
dc.contributor.funder MINISTERIO DE ECONOMÍA Y COMPETITIVIDAD es_ES
dc.description.references Arens, R. (1951). The adjoint of a bilinear operation. Proceedings of the American Mathematical Society, 2(6), 839-848. doi:10.1090/s0002-9939-1951-0045941-1 es_ES
dc.description.references Aron, R. M., & Berner, P. D. (1978). A Hahn-Banach extension theorem for analytic mappings. Bulletin de la Société mathématique de France, 79, 3-24. doi:10.24033/bsmf.1862 es_ES
dc.description.references Aron, R. M., Cole, B. J., & Gamelin, T. W. (1995). Weak-Star Continuous Analytic Functions. Canadian Journal of Mathematics, 47(4), 673-683. doi:10.4153/cjm-1995-035-1 es_ES
dc.description.references Bergh, J., & Löfström, J. (1976). Interpolation Spaces. Grundlehren der mathematischen Wissenschaften. doi:10.1007/978-3-642-66451-9 es_ES
dc.description.references Besoy, B. F., & Cobos, F. (2019). Interpolation of the measure of non-compactness of bilinear operators among quasi-Banach spaces. Journal of Approximation Theory, 243, 25-44. doi:10.1016/j.jat.2019.03.004 es_ES
dc.description.references Beucher, O. J. (1989). On interpolation of strictly (co-)singular linear operators. Proceedings of the Royal Society of Edinburgh: Section A Mathematics, 112(3-4), 263-269. doi:10.1017/s0308210500018734 es_ES
dc.description.references Botelho, G. (2002). Weakly Compact and Absolutely Summing Polynomials. Journal of Mathematical Analysis and Applications, 265(2), 458-462. doi:10.1006/jmaa.2001.7674 es_ES
dc.description.references Botelho, G., Pellegrino, D., & Rueda, P. (2007). On Composition Ideals of Multilinear Mappings and Homogeneous Polynomials. Publications of the Research Institute for Mathematical Sciences, 43(4), 1139-1155. doi:10.2977/prims/1201012383 es_ES
dc.description.references Braunss, H.-A., & Junek, H. (2004). Factorization of injective ideals by interpolation. Journal of Mathematical Analysis and Applications, 297(2), 740-750. doi:10.1016/j.jmaa.2004.04.045 es_ES
dc.description.references Cobos, F. (1999). Interpolation theory and measures related to operator ideals. The Quarterly Journal of Mathematics, 50(200), 401-416. doi:10.1093/qjmath/50.200.401 es_ES
dc.description.references Cobos, F., Manzano, A., Martínez, A., & Matos, P. (2000). On interpolation of strictly singular operators, strictly co-singular operators and related operator ideals. Proceedings of the Royal Society of Edinburgh: Section A Mathematics, 130(5), 971-989. doi:10.1017/s0308210500000524 es_ES
dc.description.references Cobos, F., & Martínez, A. (1999). Remarks on Interpolation Properties of the Measure of Weak Non -- Compactness and Ideal Variations. Mathematische Nachrichten, 208(1), 93-100. doi:10.1002/mana.3212080104 es_ES
dc.description.references Dahia, E., Achour, D., & Sánchez Pérez, E. A. (2013). Absolutely continuous multilinear operators. Journal of Mathematical Analysis and Applications, 397(1), 205-224. doi:10.1016/j.jmaa.2012.07.034 es_ES
dc.description.references González, M., & Gutiérrez, J. M. (1999). Injective factorization of holomorphic mappings. Proceedings of the American Mathematical Society, 127(6), 1715-1721. doi:10.1090/s0002-9939-99-04917-5 es_ES
dc.description.references González, M., & Gutiérrez, J. (2000). Erratum to «Injective factorization of holomorphic mappings». Proceedings of the American Mathematical Society, 129(4), 1255-1256. doi:10.1090/s0002-9939-00-06055-x es_ES
dc.description.references Grothendieck, A. (1954). Sur Certains Sous-Espaces Vectoriels De Lp. Canadian Journal of Mathematics, 6, 158-160. doi:10.4153/cjm-1954-017-x es_ES
dc.description.references Heinrich, S. (1980). Closed operator ideals and interpolation. Journal of Functional Analysis, 35(3), 397-411. doi:10.1016/0022-1236(80)90089-0 es_ES
dc.description.references Jarchow, H. (1981). Locally Convex Spaces. Mathematische Leitfäden. doi:10.1007/978-3-322-90559-8 es_ES
dc.description.references Kato, T. (1958). Perturbation theory for nullity, deficiency and other quantities of linear operators. Journal d’Analyse Mathématique, 6(1), 261-322. doi:10.1007/bf02790238 es_ES
dc.description.references López Molina, J. A., & Sánchez Pérez, E. A. (2000). On operator ideals related to (p,σ)-absolutely continuous operators. Studia Mathematica, 138(1), 25-40. doi:10.4064/sm-138-1-25-40 es_ES
dc.description.references Maligranda, L. (1986). Interpolation between sum and intersection of Banach spaces. Journal of Approximation Theory, 47(1), 42-53. doi:10.1016/0021-9045(86)90045-6 es_ES
dc.description.references Maligranda, L., & Quevedo, A. (1990). Interpolation of weakly compact operators. Archiv der Mathematik, 55(3), 280-284. doi:10.1007/bf01191169 es_ES
dc.description.references Matter, U. (1987). Absolutely Continuous Operators and Super-Reflexivity. Mathematische Nachrichten, 130(1), 193-216. doi:10.1002/mana.19871300118 es_ES
dc.description.references Pellegrino, D., Rueda, P., & Sánchez-Pérez, E. A. (2015). Surveying the spirit of absolute summability on multilinear operators and homogeneous polynomials. Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A. Matemáticas, 110(1), 285-302. doi:10.1007/s13398-015-0224-8 es_ES
dc.description.references A.Pietsch Ideals of multilinear functionals (designs of a theory) Proceedings of the Second International Conference on Operator Algebras Ideals and Their Applications in Theoretical Physics Teubner‐Texte Math. vol. 67 Teubner Leipzig 1983 pp.185–199. es_ES
dc.description.references Popa, D. (2016). A note on the concept of factorable strongly p-summing operators. Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A. Matemáticas, 111(2), 465-471. doi:10.1007/s13398-016-0307-1 es_ES
dc.description.references Tylli, H.-O. (1995). The essential norm of an operator is not self-dual. Israel Journal of Mathematics, 91(1-3), 93-110. doi:10.1007/bf02761641 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem