- -

Sustainability and optimization in the automotive sector for adaptation to government vehicle pollutant emission regulations

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Sustainability and optimization in the automotive sector for adaptation to government vehicle pollutant emission regulations

Mostrar el registro completo del ítem

Rubio Montoya, FJ.; Llopis-Albert, C.; Valero Chuliá, FJ.; Besa Gonzálvez, AJ. (2020). Sustainability and optimization in the automotive sector for adaptation to government vehicle pollutant emission regulations. Journal of Business Research. 112:561-566. https://doi.org/10.1016/j.jbusres.2019.10.050

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/172313

Ficheros en el ítem

Metadatos del ítem

Título: Sustainability and optimization in the automotive sector for adaptation to government vehicle pollutant emission regulations
Autor: Rubio Montoya, Francisco José Llopis-Albert, Carlos Valero Chuliá, Francisco José Besa Gonzálvez, Antonio José
Entidad UPV: Universitat Politècnica de València. Departamento de Ingeniería Mecánica y de Materiales - Departament d'Enginyeria Mecànica i de Materials
Fecha difusión:
Resumen:
[EN] Future competitiveness in the automotive sector involves designing sustainability strategies to ensure compliance with government policies on environmental issues. This requires technological optimization to minimize ...[+]
Palabras clave: Automotive sector , Greenhouse gas emissions trading , Global warming , Vehicle fuel consumption optimization , Government energy policies , Emission regulations and subsidies
Derechos de uso: Cerrado
Fuente:
Journal of Business Research. (issn: 0148-2963 )
DOI: 10.1016/j.jbusres.2019.10.050
Editorial:
Elsevier
Versión del editor: https://doi.org/10.1016/j.jbusres.2019.10.050
Código del Proyecto:
info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2013-2016/DPI2017-84201-R/ES/INTEGRACION DE MODELOS BIOMECANICOS EN EL DESARROLLO Y OPERACION DE ROBOTS REHABILITADORES RECONFIGURABLES/
Agradecimientos:
This work was funded by the Programa Estatal de Investigacion de Proyectos I+D+i, del Ministerio de Ciencia, Innovacion y Universidades of Spain under the project DPI2017-84201-R.
Tipo: Artículo

References

Kim, C. H., & Kim, B. K. (2007). Minimum-Energy Translational Trajectory Generation for Differential-Driven Wheeled Mobile Robots. Journal of Intelligent and Robotic Systems, 49(4), 367-383. doi:10.1007/s10846-007-9142-0

EU, 2014, A policy framework for climate and energy in the period from 2020 to 2030. Brussels.

EU, 2015, The 2015 International Climate Change Agreement: Shaping international climate policy beyond 2020. Brussels. [+]
Kim, C. H., & Kim, B. K. (2007). Minimum-Energy Translational Trajectory Generation for Differential-Driven Wheeled Mobile Robots. Journal of Intelligent and Robotic Systems, 49(4), 367-383. doi:10.1007/s10846-007-9142-0

EU, 2014, A policy framework for climate and energy in the period from 2020 to 2030. Brussels.

EU, 2015, The 2015 International Climate Change Agreement: Shaping international climate policy beyond 2020. Brussels.

EU, 2017, European emission standards, Amending Directive 2007/46/EC. Official Journal of the European Union.

EU, 2018, Emissions Trading System (ETS) handbook. Brussels. https://ec.europa.eu/clima/sites/clima/files/docs/ets_handbook_en.pdf.

Bayar, G. (2013). Long distance autonomous trajectory tracking for an orchard vehicle. Industrial Robot: An International Journal, 40(1), 27-40. doi:10.1108/01439911311294237

Hannoun, H., Diallo, D., & Marchand, C., 2006. Energy management strategy for a parallel hybrid electric vehicle using fuzzy logic. In International Symposium on Power Electronics, Electrical Drives, Automation and Motion, 2006. SPEEDAM 2006, Taormina, 2006 (pp. 229–234). https://doi.org/10.1109/SPEEDAM.2006.1649776.

Li, B., & Shao, Z. (2015). Simultaneous dynamic optimization: A trajectory planning method for nonholonomic car-like robots. Advances in Engineering Software, 87, 30-42. doi:10.1016/j.advengsoft.2015.04.011

Dynamic modeling and control of hybrid electric vehicle powertrain systems. (1998). IEEE Control Systems, 18(5), 17-33. doi:10.1109/37.722250

Schittkowski, K. (2010). NLPQLPA Fortran implementation of a sequential quadratic programming algorithm with distributed and non-monotone line search. Report, Department of Computer Science, University of Bayreuth.

Renny Simba, K., Uchiyama, N., & Sano, S. (2016). Real-time smooth trajectory generation for nonholonomic mobile robots using Bézier curves. Robotics and Computer-Integrated Manufacturing, 41, 31-42. doi:10.1016/j.rcim.2016.02.002

Tokekar, P., Karnad, N., & Isler, V. (2014). Energy-optimal trajectory planning for car-like robots. Autonomous Robots, 37(3), 279-300. doi:10.1007/s10514-014-9390-3

Valero, F., Rubio, F., Llopis-Albert, C., & Cuadrado, J. I., 2017. Influence of the Friction Coefficient on the Trajectory Performance for a Car-Like Robot. Mathematical Problems in Engineering, 2017, Article ID 4562647. https://doi.org/10.1155/2017/4562647.

World Health Organization, WHO, 2018. https://www.who.int/en.

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem