- -

Sustainability and optimization in the automotive sector for adaptation to government vehicle pollutant emission regulations

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Sustainability and optimization in the automotive sector for adaptation to government vehicle pollutant emission regulations

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Rubio Montoya, Francisco José es_ES
dc.contributor.author Llopis-Albert, Carlos es_ES
dc.contributor.author Valero Chuliá, Francisco José es_ES
dc.contributor.author Besa Gonzálvez, Antonio José es_ES
dc.date.accessioned 2021-09-14T03:33:35Z
dc.date.available 2021-09-14T03:33:35Z
dc.date.issued 2020-05 es_ES
dc.identifier.issn 0148-2963 es_ES
dc.identifier.uri http://hdl.handle.net/10251/172313
dc.description.abstract [EN] Future competitiveness in the automotive sector involves designing sustainability strategies to ensure compliance with government policies on environmental issues. This requires technological optimization to minimize vehicles' energy consumption and reduce greenhouse gas (GHG) emissions. This paper presents an algorithm to increase the energy efficiency of vehicles with internal combustion engines. On the one hand, the use of this algorithm optimizes the time spent traveling and, on the other, it reduces the energy consumed and the emission of polluting gases in line with the European Union (EU) guidelines in terms of reduction of greenhouse gas emissions, renewable energy share, and improvements in energy efficiency. Based on the difference in energy consumption between optimized and unoptimized vehicles, the economic benefit is quantified in terms of GHG emission quotas, volume of fuel consumed, and the indirect benefits with respect to improving corporate brand image. The methodology has been applied to real examples. es_ES
dc.description.sponsorship This work was funded by the Programa Estatal de Investigacion de Proyectos I+D+i, del Ministerio de Ciencia, Innovacion y Universidades of Spain under the project DPI2017-84201-R. es_ES
dc.language Inglés es_ES
dc.publisher Elsevier es_ES
dc.relation.ispartof Journal of Business Research es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Automotive sector es_ES
dc.subject Greenhouse gas emissions trading es_ES
dc.subject Global warming es_ES
dc.subject Vehicle fuel consumption optimization es_ES
dc.subject Government energy policies es_ES
dc.subject Emission regulations and subsidies es_ES
dc.subject.classification INGENIERIA MECANICA es_ES
dc.title Sustainability and optimization in the automotive sector for adaptation to government vehicle pollutant emission regulations es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1016/j.jbusres.2019.10.050 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2013-2016/DPI2017-84201-R/ES/INTEGRACION DE MODELOS BIOMECANICOS EN EL DESARROLLO Y OPERACION DE ROBOTS REHABILITADORES RECONFIGURABLES/ es_ES
dc.rights.accessRights Cerrado es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Ingeniería Mecánica y de Materiales - Departament d'Enginyeria Mecànica i de Materials es_ES
dc.description.bibliographicCitation Rubio Montoya, FJ.; Llopis-Albert, C.; Valero Chuliá, FJ.; Besa Gonzálvez, AJ. (2020). Sustainability and optimization in the automotive sector for adaptation to government vehicle pollutant emission regulations. Journal of Business Research. 112:561-566. https://doi.org/10.1016/j.jbusres.2019.10.050 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1016/j.jbusres.2019.10.050 es_ES
dc.description.upvformatpinicio 561 es_ES
dc.description.upvformatpfin 566 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 112 es_ES
dc.relation.pasarela S\409604 es_ES
dc.contributor.funder Agencia Estatal de Investigación es_ES
dc.description.references Kim, C. H., & Kim, B. K. (2007). Minimum-Energy Translational Trajectory Generation for Differential-Driven Wheeled Mobile Robots. Journal of Intelligent and Robotic Systems, 49(4), 367-383. doi:10.1007/s10846-007-9142-0 es_ES
dc.description.references EU, 2014, A policy framework for climate and energy in the period from 2020 to 2030. Brussels. es_ES
dc.description.references EU, 2015, The 2015 International Climate Change Agreement: Shaping international climate policy beyond 2020. Brussels. es_ES
dc.description.references EU, 2017, European emission standards, Amending Directive 2007/46/EC. Official Journal of the European Union. es_ES
dc.description.references EU, 2018, Emissions Trading System (ETS) handbook. Brussels. https://ec.europa.eu/clima/sites/clima/files/docs/ets_handbook_en.pdf. es_ES
dc.description.references Bayar, G. (2013). Long distance autonomous trajectory tracking for an orchard vehicle. Industrial Robot: An International Journal, 40(1), 27-40. doi:10.1108/01439911311294237 es_ES
dc.description.references Hannoun, H., Diallo, D., & Marchand, C., 2006. Energy management strategy for a parallel hybrid electric vehicle using fuzzy logic. In International Symposium on Power Electronics, Electrical Drives, Automation and Motion, 2006. SPEEDAM 2006, Taormina, 2006 (pp. 229–234). https://doi.org/10.1109/SPEEDAM.2006.1649776. es_ES
dc.description.references Li, B., & Shao, Z. (2015). Simultaneous dynamic optimization: A trajectory planning method for nonholonomic car-like robots. Advances in Engineering Software, 87, 30-42. doi:10.1016/j.advengsoft.2015.04.011 es_ES
dc.description.references Dynamic modeling and control of hybrid electric vehicle powertrain systems. (1998). IEEE Control Systems, 18(5), 17-33. doi:10.1109/37.722250 es_ES
dc.description.references Schittkowski, K. (2010). NLPQLPA Fortran implementation of a sequential quadratic programming algorithm with distributed and non-monotone line search. Report, Department of Computer Science, University of Bayreuth. es_ES
dc.description.references Renny Simba, K., Uchiyama, N., & Sano, S. (2016). Real-time smooth trajectory generation for nonholonomic mobile robots using Bézier curves. Robotics and Computer-Integrated Manufacturing, 41, 31-42. doi:10.1016/j.rcim.2016.02.002 es_ES
dc.description.references Tokekar, P., Karnad, N., & Isler, V. (2014). Energy-optimal trajectory planning for car-like robots. Autonomous Robots, 37(3), 279-300. doi:10.1007/s10514-014-9390-3 es_ES
dc.description.references Valero, F., Rubio, F., Llopis-Albert, C., & Cuadrado, J. I., 2017. Influence of the Friction Coefficient on the Trajectory Performance for a Car-Like Robot. Mathematical Problems in Engineering, 2017, Article ID 4562647. https://doi.org/10.1155/2017/4562647. es_ES
dc.description.references World Health Organization, WHO, 2018. https://www.who.int/en. es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem