Mostrar el registro sencillo del ítem
dc.contributor.author | Rubio Montoya, Francisco José | es_ES |
dc.contributor.author | Llopis-Albert, Carlos | es_ES |
dc.contributor.author | Valero Chuliá, Francisco José | es_ES |
dc.contributor.author | Besa Gonzálvez, Antonio José | es_ES |
dc.date.accessioned | 2021-09-14T03:33:35Z | |
dc.date.available | 2021-09-14T03:33:35Z | |
dc.date.issued | 2020-05 | es_ES |
dc.identifier.issn | 0148-2963 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/172313 | |
dc.description.abstract | [EN] Future competitiveness in the automotive sector involves designing sustainability strategies to ensure compliance with government policies on environmental issues. This requires technological optimization to minimize vehicles' energy consumption and reduce greenhouse gas (GHG) emissions. This paper presents an algorithm to increase the energy efficiency of vehicles with internal combustion engines. On the one hand, the use of this algorithm optimizes the time spent traveling and, on the other, it reduces the energy consumed and the emission of polluting gases in line with the European Union (EU) guidelines in terms of reduction of greenhouse gas emissions, renewable energy share, and improvements in energy efficiency. Based on the difference in energy consumption between optimized and unoptimized vehicles, the economic benefit is quantified in terms of GHG emission quotas, volume of fuel consumed, and the indirect benefits with respect to improving corporate brand image. The methodology has been applied to real examples. | es_ES |
dc.description.sponsorship | This work was funded by the Programa Estatal de Investigacion de Proyectos I+D+i, del Ministerio de Ciencia, Innovacion y Universidades of Spain under the project DPI2017-84201-R. | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | Elsevier | es_ES |
dc.relation.ispartof | Journal of Business Research | es_ES |
dc.rights | Reserva de todos los derechos | es_ES |
dc.subject | Automotive sector | es_ES |
dc.subject | Greenhouse gas emissions trading | es_ES |
dc.subject | Global warming | es_ES |
dc.subject | Vehicle fuel consumption optimization | es_ES |
dc.subject | Government energy policies | es_ES |
dc.subject | Emission regulations and subsidies | es_ES |
dc.subject.classification | INGENIERIA MECANICA | es_ES |
dc.title | Sustainability and optimization in the automotive sector for adaptation to government vehicle pollutant emission regulations | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1016/j.jbusres.2019.10.050 | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2013-2016/DPI2017-84201-R/ES/INTEGRACION DE MODELOS BIOMECANICOS EN EL DESARROLLO Y OPERACION DE ROBOTS REHABILITADORES RECONFIGURABLES/ | es_ES |
dc.rights.accessRights | Cerrado | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Ingeniería Mecánica y de Materiales - Departament d'Enginyeria Mecànica i de Materials | es_ES |
dc.description.bibliographicCitation | Rubio Montoya, FJ.; Llopis-Albert, C.; Valero Chuliá, FJ.; Besa Gonzálvez, AJ. (2020). Sustainability and optimization in the automotive sector for adaptation to government vehicle pollutant emission regulations. Journal of Business Research. 112:561-566. https://doi.org/10.1016/j.jbusres.2019.10.050 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.1016/j.jbusres.2019.10.050 | es_ES |
dc.description.upvformatpinicio | 561 | es_ES |
dc.description.upvformatpfin | 566 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 112 | es_ES |
dc.relation.pasarela | S\409604 | es_ES |
dc.contributor.funder | Agencia Estatal de Investigación | es_ES |
dc.description.references | Kim, C. H., & Kim, B. K. (2007). Minimum-Energy Translational Trajectory Generation for Differential-Driven Wheeled Mobile Robots. Journal of Intelligent and Robotic Systems, 49(4), 367-383. doi:10.1007/s10846-007-9142-0 | es_ES |
dc.description.references | EU, 2014, A policy framework for climate and energy in the period from 2020 to 2030. Brussels. | es_ES |
dc.description.references | EU, 2015, The 2015 International Climate Change Agreement: Shaping international climate policy beyond 2020. Brussels. | es_ES |
dc.description.references | EU, 2017, European emission standards, Amending Directive 2007/46/EC. Official Journal of the European Union. | es_ES |
dc.description.references | EU, 2018, Emissions Trading System (ETS) handbook. Brussels. https://ec.europa.eu/clima/sites/clima/files/docs/ets_handbook_en.pdf. | es_ES |
dc.description.references | Bayar, G. (2013). Long distance autonomous trajectory tracking for an orchard vehicle. Industrial Robot: An International Journal, 40(1), 27-40. doi:10.1108/01439911311294237 | es_ES |
dc.description.references | Hannoun, H., Diallo, D., & Marchand, C., 2006. Energy management strategy for a parallel hybrid electric vehicle using fuzzy logic. In International Symposium on Power Electronics, Electrical Drives, Automation and Motion, 2006. SPEEDAM 2006, Taormina, 2006 (pp. 229–234). https://doi.org/10.1109/SPEEDAM.2006.1649776. | es_ES |
dc.description.references | Li, B., & Shao, Z. (2015). Simultaneous dynamic optimization: A trajectory planning method for nonholonomic car-like robots. Advances in Engineering Software, 87, 30-42. doi:10.1016/j.advengsoft.2015.04.011 | es_ES |
dc.description.references | Dynamic modeling and control of hybrid electric vehicle powertrain systems. (1998). IEEE Control Systems, 18(5), 17-33. doi:10.1109/37.722250 | es_ES |
dc.description.references | Schittkowski, K. (2010). NLPQLPA Fortran implementation of a sequential quadratic programming algorithm with distributed and non-monotone line search. Report, Department of Computer Science, University of Bayreuth. | es_ES |
dc.description.references | Renny Simba, K., Uchiyama, N., & Sano, S. (2016). Real-time smooth trajectory generation for nonholonomic mobile robots using Bézier curves. Robotics and Computer-Integrated Manufacturing, 41, 31-42. doi:10.1016/j.rcim.2016.02.002 | es_ES |
dc.description.references | Tokekar, P., Karnad, N., & Isler, V. (2014). Energy-optimal trajectory planning for car-like robots. Autonomous Robots, 37(3), 279-300. doi:10.1007/s10514-014-9390-3 | es_ES |
dc.description.references | Valero, F., Rubio, F., Llopis-Albert, C., & Cuadrado, J. I., 2017. Influence of the Friction Coefficient on the Trajectory Performance for a Car-Like Robot. Mathematical Problems in Engineering, 2017, Article ID 4562647. https://doi.org/10.1155/2017/4562647. | es_ES |
dc.description.references | World Health Organization, WHO, 2018. https://www.who.int/en. | es_ES |