- -

Solid-state electrochemical characterization of emissions and authorities producing Roman brass coins

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Solid-state electrochemical characterization of emissions and authorities producing Roman brass coins

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Di Fazio, Melania es_ES
dc.contributor.author Felici, Anna Candida es_ES
dc.contributor.author Catalli, Fiorenzo es_ES
dc.contributor.author Domenech Carbo, Mª Teresa es_ES
dc.contributor.author De Vito, Caterina es_ES
dc.contributor.author Doménech-Carbó, Antonio es_ES
dc.date.accessioned 2021-09-14T03:33:37Z
dc.date.available 2021-09-14T03:33:37Z
dc.date.issued 2020-01 es_ES
dc.identifier.issn 0026-265X es_ES
dc.identifier.uri http://hdl.handle.net/10251/172315
dc.description.abstract [EN] The voltammetry of immobilized particles (VIMP) is applied to describe the solid state electrochemistry of brass. This methodology, which involves sampling at the nanogram level, is applied to discriminate mints/authorities producing different Roman monetary emissions covering since the Republic (88 BCE) to Domitianus (55-96 CE) Upon attachment to graphite electrodes in contact with aqueous acetate buffer at pH 4.75, well defined voltarnmetric responses were obtained centered on Cu- and Zn-localized signals whose intensity can be correlated to EMP data, being sensitive to the contents of Zn (15-30 wt.%) and Sn (0.01-1.1 wt.%). Voltammetric data, combined with ATR-FTIR and FIB-PESEM/EDS, yield information on the structure of the metal patina and permit to characterize different monetary emissions being able, in the case of Augustus' sestertii, to discriminate between the productions from different monetary authorities. es_ES
dc.description.sponsorship Financial support is gratefully acknowledged from the Spanish "R + D +I" project CTQ2017-85317-C2-1-P, CTQ2014-53736-C3-1-P and CTQ2014-53736-C3-2-P, which are supported by the Ministerio de Glenda, Innovacion y Universidades, Fondo Europeo de Desarrollo Regional (ERDF) funds and Agenda Estatal de Investigacion (AEI). The authors wish to thank Mr. Manuel Planes, Dr. Jose Luis Moya and Mrs. Alicia Nuez Inberrion, technical supervisors of the Electron Microscopy Service of the Universitat Politecnica de Valencia. es_ES
dc.language Inglés es_ES
dc.publisher Elsevier es_ES
dc.relation MINECO/CTQ2014-53736-C3-2-P es_ES
dc.relation MINECO/CTQ2014-53736-C3-1-P es_ES
dc.relation.ispartof Microchemical Journal es_ES
dc.rights Reconocimiento - No comercial - Sin obra derivada (by-nc-nd) es_ES
dc.subject Orichalcum es_ES
dc.subject Roman coins es_ES
dc.subject Voltammetry es_ES
dc.subject Archaeometry es_ES
dc.subject.classification PINTURA es_ES
dc.title Solid-state electrochemical characterization of emissions and authorities producing Roman brass coins es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1016/j.microc.2019.104306 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2013-2016/CTQ2017-85317-C2-1-P/ES/APLICACION DE TECNICAS AVANZADAS DE MICROSCOPIA EN EL ESTUDIO DEL PATRIMONIO CERAMICO Y VITREO/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Conservación y Restauración de Bienes Culturales - Departament de Conservació i Restauració de Béns Culturals es_ES
dc.description.bibliographicCitation Di Fazio, M.; Felici, AC.; Catalli, F.; Domenech Carbo, MT.; De Vito, C.; Doménech-Carbó, A. (2020). Solid-state electrochemical characterization of emissions and authorities producing Roman brass coins. Microchemical Journal. 152:1-9. https://doi.org/10.1016/j.microc.2019.104306 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1016/j.microc.2019.104306 es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 9 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 152 es_ES
dc.relation.pasarela S\423714 es_ES
dc.contributor.funder Agencia Estatal de Investigación es_ES
dc.contributor.funder European Regional Development Fund es_ES
dc.contributor.funder Ministerio de Economía y Competitividad es_ES
dc.description.references Craddock, P. T. (1978). The composition of the copper alloys used by the Greek, Etruscan and Roman civilizations. Journal of Archaeological Science, 5(1), 1-16. doi:10.1016/0305-4403(78)90015-8 es_ES
dc.description.references Rehren, T. (1999). Small Size, Large Scale Roman Brass Production in Germania Inferior. Journal of Archaeological Science, 26(8), 1083-1087. doi:10.1006/jasc.1999.0402 es_ES
dc.description.references Martini, C., Chiavari, C., Ospitali, F., Grazzi, F., Scherillo, A., Soffritti, C., & Garagnani, G. L. (2013). Investigations on a brass armour: Authentic or forgery? Materials Chemistry and Physics, 142(1), 229-237. doi:10.1016/j.matchemphys.2013.07.010 es_ES
dc.description.references Barrena, M. I., Gómez de Salazar, J. M., & Soria, A. (2008). Corrosion of brass archaeological blinker: Characterisation of natural degradation process. Materials Letters, 62(24), 3944-3946. doi:10.1016/j.matlet.2008.05.015 es_ES
dc.description.references Bourgarit, D., & Bauchau, F. (2010). The ancient brass cementation processes revisited by extensive experimental simulation. JOM, 62(3), 27-33. doi:10.1007/s11837-010-0045-3 es_ES
dc.description.references Constantinides, I., Adriaens, A., & Adams, F. (2002). Surface characterization of artificial corrosion layers on copper alloy reference materials. Applied Surface Science, 189(1-2), 90-101. doi:10.1016/s0169-4332(02)00005-3 es_ES
dc.description.references Peris-Vicente, J., Valle-Algarra, F. M., Ferrer-Eres, M. A., Gimeno-Adelantado, J. ., Mateo-Castro, R., & Soriano-Piñol, M. D. (2008). Archaeometrical study of paleometallurgical materials from the archaeological site «Cerro de las Balsas — Chinchorro» (La Albufereta, Alacant, Spain). Microchemical Journal, 90(2), 142-146. doi:10.1016/j.microc.2008.05.003 es_ES
dc.description.references Ferrer-Eres, M. A., Peris-Vicente, J., Valle-Algarra, F. M., Gimeno-Adelantado, J. V., Sánchez-Ramos, S., & Soriano-Piñol, M. D. (2010). Archaeopolymetallurgical study of materials from an Iberian culture site in Spain by scanning electron microscopy with X-ray microanalysis, chemometrics and image analysis. Microchemical Journal, 95(2), 298-305. doi:10.1016/j.microc.2010.01.003 es_ES
dc.description.references Del Hoyo-Meléndez, J. M., Świt, P., Matosz, M., Woźniak, M., Klisińska-Kopacz, A., & Bratasz, Ł. (2015). Micro-XRF analysis of silver coins from medieval Poland. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 349, 6-16. doi:10.1016/j.nimb.2015.02.018 es_ES
dc.description.references Carl, M., & Young, M. L. (2016). Complementary analytical methods for analysis of Ag-plated cultural heritage objects. Microchemical Journal, 126, 307-315. doi:10.1016/j.microc.2015.12.019 es_ES
dc.description.references Lutterotti, L., Dell’Amore, F., Angelucci, D. E., Carrer, F., & Gialanella, S. (2016). Combined X-ray diffraction and fluorescence analysis in the cultural heritage field. Microchemical Journal, 126, 423-430. doi:10.1016/j.microc.2015.12.031 es_ES
dc.description.references Agresti, J., Osticioli, I., Guidotti, M. C., Kardjilov, N., & Siano, S. (2016). Non-invasive archaeometallurgical approach to the investigations of bronze figurines using neutron, laser, and X-ray techniques. Microchemical Journal, 124, 765-774. doi:10.1016/j.microc.2015.10.030 es_ES
dc.description.references Gomes, S. S., Soares, A. M., Araújo, M. F., & Correia, V. H. (2016). Lead isotopes and elemental composition of Roman fistulae plumbeae aquariae from Conimbriga (Portugal) using Quadrupole ICP-MS. Microchemical Journal, 129, 184-193. doi:10.1016/j.microc.2016.06.027 es_ES
dc.description.references Robbiola, L., & Portier, R. (2006). A global approach to the authentication of ancient bronzes based on the characterization of the alloy–patina–environment system. Journal of Cultural Heritage, 7(1), 1-12. doi:10.1016/j.culher.2005.11.001 es_ES
dc.description.references Robbiola, L., Blengino, J.-M., & Fiaud, C. (1998). Morphology and mechanisms of formation of natural patinas on archaeological Cu–Sn alloys. Corrosion Science, 40(12), 2083-2111. doi:10.1016/s0010-938x(98)00096-1 es_ES
dc.description.references Mattsson, E. (1980). Corrosion of Copper and Brass: Practical Experience in relation to Basic Data. British Corrosion Journal, 15(1), 6-13. doi:10.1179/000705980798318708 es_ES
dc.description.references Marshakov, I. K. (2005). Corrosion Resistance and Dezincing of Brasses. Protection of Metals, 41(3), 205-210. doi:10.1007/s11124-005-0031-2 es_ES
dc.description.references Sohn, S., & Kang, T. (2002). The effects of tin and nickel on the corrosion behavior of 60Cu–40Zn alloys. Journal of Alloys and Compounds, 335(1-2), 281-289. doi:10.1016/s0925-8388(01)01839-4 es_ES
dc.description.references Campanella, L., Alessandri, O. C., Ferretti, M., & Plattner, S. H. (2009). The effect of tin on dezincification of archaeological copper alloys. Corrosion Science, 51(9), 2183-2191. doi:10.1016/j.corsci.2009.05.047 es_ES
dc.description.references Doménech-Carbó, A., Doménech-Carbó, M., & Martínez-Lázaro, I. (2007). Electrochemical identification of bronze corrosion products in archaeological artefacts. A case study. Microchimica Acta, 162(3-4), 351-359. doi:10.1007/s00604-007-0839-3 es_ES
dc.description.references Costa, V., Leyssens, K., Adriaens, A., Richard, N., & Scholz, F. (2009). Electrochemistry reveals archaeological materials. Journal of Solid State Electrochemistry, 14(3), 449-451. doi:10.1007/s10008-009-0864-8 es_ES
dc.description.references Arjmand, F., & Adriaens, A. (2011). Electrochemical quantification of copper-based alloys using voltammetry of microparticles: optimization of the experimental conditions. Journal of Solid State Electrochemistry, 16(2), 535-543. doi:10.1007/s10008-011-1365-0 es_ES
dc.description.references Serghini-Idrissi, M., Bernard, M. C., Harrif, F. Z., Joiret, S., Rahmouni, K., Srhiri, A., … Ziani, M. (2005). Electrochemical and spectroscopic characterizations of patinas formed on an archaeological bronze coin. Electrochimica Acta, 50(24), 4699-4709. doi:10.1016/j.electacta.2005.01.050 es_ES
dc.description.references Šatović, D., Martinez, S., & Bobrowski, A. (2010). Electrochemical identification of corrosion products on historical and archaeological bronzes using the voltammetry of micro-particles attached to a carbon paste electrode. Talanta, 81(4-5), 1760-1765. doi:10.1016/j.talanta.2010.03.037 es_ES
dc.description.references Cepriá, G., Aranda, C., Pérez-Arantegui, J., Lacueva, F., & Castillo, J. R. (2001). Voltammetry of immobilised microparticles: a powerful analytical technique to study the physical and chemical composition of brass. Journal of Electroanalytical Chemistry, 513(1), 52-58. doi:10.1016/s0022-0728(01)00599-x es_ES
dc.description.references Doménech-Carbó, A. (2009). Voltammetric methods applied to identification, speciation, and quantification of analytes from works of art: an overview. Journal of Solid State Electrochemistry, 14(3), 363-379. doi:10.1007/s10008-009-0858-6 es_ES
dc.description.references Doménech-Carbó, A., & Doménech-Carbó, M. T. (2017). Electroanalytical techniques in archaeological and art conservation. Pure and Applied Chemistry, 90(3), 447-461. doi:10.1515/pac-2017-0508 es_ES
dc.description.references Doménech-Carbo, A. (2017). Electrochemical dating: a review. Journal of Solid State Electrochemistry, 21(7), 1987-1998. doi:10.1007/s10008-017-3620-5 es_ES
dc.description.references Doménech-Carbó, A., & Scholz, F. (2019). Electrochemical Age Determinations of Metallic Specimens—Utilization of the Corrosion Clock. Accounts of Chemical Research, 52(2), 400-406. doi:10.1021/acs.accounts.8b00472 es_ES
dc.description.references Doménech-Carbó, A., Doménech-Carbó, M. T., Capelo, S., Pasíes, T., & Martínez-Lázaro, I. (2014). Dating Archaeological Copper/Bronze Artifacts by Using the Voltammetry of Microparticles. Angewandte Chemie International Edition, 53(35), 9262-9266. doi:10.1002/anie.201404522 es_ES
dc.description.references Di Fazio, M., Felici, A. C., Catalli, F., & De Vito, C. (2019). Microstructure and chemical composition of Roman orichalcum coins emitted after the monetary reform of Augustus (23 B.C.). Scientific Reports, 9(1). doi:10.1038/s41598-019-48941-4 es_ES
dc.description.references Doménech-Carbó, M. T., Álvarez-Romero, C., Doménech-Carbó, A., Osete-Cortina, L., & Martínez-Bazán, M. L. (2019). Microchemical surface analysis of historic copper-based coins by the combined use of FIB-FESEM-EDX, OM, FTIR spectroscopy and solid-state electrochemical techniques. Microchemical Journal, 148, 573-581. doi:10.1016/j.microc.2019.05.039 es_ES
dc.description.references Doménech-Carbó, A., del Hoyo-Meléndez, J. M., Doménech-Carbó, M. T., & Piquero-Cilla, J. (2017). Electrochemical analysis of the first Polish coins using voltammetry of immobilized particles. Microchemical Journal, 130, 47-55. doi:10.1016/j.microc.2016.07.020 es_ES
dc.description.references Di Turo, F., Montoya, N., Piquero-Cilla, J., De Vito, C., Coletti, F., Favero, G., & Doménech-Carbó, A. (2017). Archaeometric analysis of Roman bronze coins from the Magna Mater temple using solid-state voltammetry and electrochemical impedance spectroscopy. Analytica Chimica Acta, 955, 36-47. doi:10.1016/j.aca.2016.12.007 es_ES
dc.description.references Di Turo, F., Montoya, N., Piquero-Cilla, J., De Vito, C., Coletti, F., Favero, G., … Doménech-Carbó, A. (2017). Dating Archaeological Strata in theMagna MaterTemple Using Solid-state Voltammetric Analysis of Leaded Bronze Coins. Electroanalysis, 30(2), 361-370. doi:10.1002/elan.201700724 es_ES
dc.description.references Doménech‐Carbó, A., Doménech‐Carbó, M. T., Álvarez‐Romero, C., Pasíes, T., & Buendía, M. (2019). Screening of Iberian Coinage in the 2 th ‐1 th BCE Period Using the Voltammetry of Immobilized Particles. Electroanalysis, 31(6), 1164-1173. doi:10.1002/elan.201900090 es_ES
dc.description.references Doménech-Carbó, A., Doménech-Carbó, M. T., Montagna, E., Álvarez-Romero, C., & Lee, Y. (2017). Electrochemical discrimination of mints: The last Chinese emperors Kuang Hsü and Hsüan T’ung monetary unification. Talanta, 169, 50-56. doi:10.1016/j.talanta.2017.03.025 es_ES
dc.description.references Doménech-Carbó, A., Doménech-Carbó, M. T., Redondo-Marugán, J., Osete-Cortina, L., & Vivancos-Ramón, M. V. (2015). Electrochemical Characterization of Corrosion Products in Leaded Bronze Sculptures Considering Ohmic Drop Effects on Tafel Analysis. Electroanalysis, 28(4), 833-845. doi:10.1002/elan.201500613 es_ES
dc.description.references Doménech-Carbó, A., Doménech-Carbó, M. T., Redondo-Marugán, J., Osete-Cortina, L., Barrio, J., Fuentes, A., … Pasíes, T. (2017). Electrochemical Characterization and Dating of Archaeological Leaded Bronze Objects Using the Voltammetry of Immobilized Particles. Archaeometry, 60(2), 308-324. doi:10.1111/arcm.12308 es_ES
dc.description.references Griesser, M., Kockelmann, W., Hradil, K., & Traum, R. (2016). New insights into the manufacturing technique and corrosion of high leaded antique bronze coins. Microchemical Journal, 126, 181-193. doi:10.1016/j.microc.2015.12.002 es_ES
dc.description.references Klein, S., Lahaye, Y., Brey, G. P., & von Kaenel, H.-M. (2004). The early roman imperial AES coinage II: Tracing the copper sources by analysis of lead and copper isotopes-copper coins of Augustus and Tiberius*. Archaeometry, 46(3), 469-480. doi:10.1111/j.1475-4754.2004.00168.x es_ES
dc.description.references DERAISME, A., & BARRANDON, J.-N. (2008). UNOFFICIAL COINAGE IN THE THIRD CENTURY ad IN THE GALLO-ROMAN WORLD: CHEMICAL AND PHYSICAL ANALYSES FOR DETERMINING THE LOCALIZATION OF THE WORKSHOP*. Archaeometry, 50(5), 835-854. doi:10.1111/j.1475-4754.2007.00366.x es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem