Mostrar el registro sencillo del ítem
dc.contributor.author | Di Fazio, Melania | es_ES |
dc.contributor.author | Felici, Anna Candida | es_ES |
dc.contributor.author | Catalli, Fiorenzo | es_ES |
dc.contributor.author | Domenech Carbo, Mª Teresa | es_ES |
dc.contributor.author | De Vito, Caterina | es_ES |
dc.contributor.author | Doménech-Carbó, Antonio | es_ES |
dc.date.accessioned | 2021-09-14T03:33:37Z | |
dc.date.available | 2021-09-14T03:33:37Z | |
dc.date.issued | 2020-01 | es_ES |
dc.identifier.issn | 0026-265X | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/172315 | |
dc.description.abstract | [EN] The voltammetry of immobilized particles (VIMP) is applied to describe the solid state electrochemistry of brass. This methodology, which involves sampling at the nanogram level, is applied to discriminate mints/authorities producing different Roman monetary emissions covering since the Republic (88 BCE) to Domitianus (55-96 CE) Upon attachment to graphite electrodes in contact with aqueous acetate buffer at pH 4.75, well defined voltarnmetric responses were obtained centered on Cu- and Zn-localized signals whose intensity can be correlated to EMP data, being sensitive to the contents of Zn (15-30 wt.%) and Sn (0.01-1.1 wt.%). Voltammetric data, combined with ATR-FTIR and FIB-PESEM/EDS, yield information on the structure of the metal patina and permit to characterize different monetary emissions being able, in the case of Augustus' sestertii, to discriminate between the productions from different monetary authorities. | es_ES |
dc.description.sponsorship | Financial support is gratefully acknowledged from the Spanish "R + D +I" project CTQ2017-85317-C2-1-P, CTQ2014-53736-C3-1-P and CTQ2014-53736-C3-2-P, which are supported by the Ministerio de Glenda, Innovacion y Universidades, Fondo Europeo de Desarrollo Regional (ERDF) funds and Agenda Estatal de Investigacion (AEI). The authors wish to thank Mr. Manuel Planes, Dr. Jose Luis Moya and Mrs. Alicia Nuez Inberrion, technical supervisors of the Electron Microscopy Service of the Universitat Politecnica de Valencia. | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | Elsevier | es_ES |
dc.relation | MINECO/CTQ2014-53736-C3-2-P | es_ES |
dc.relation | MINECO/CTQ2014-53736-C3-1-P | es_ES |
dc.relation.ispartof | Microchemical Journal | es_ES |
dc.rights | Reconocimiento - No comercial - Sin obra derivada (by-nc-nd) | es_ES |
dc.subject | Orichalcum | es_ES |
dc.subject | Roman coins | es_ES |
dc.subject | Voltammetry | es_ES |
dc.subject | Archaeometry | es_ES |
dc.subject.classification | PINTURA | es_ES |
dc.title | Solid-state electrochemical characterization of emissions and authorities producing Roman brass coins | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1016/j.microc.2019.104306 | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2013-2016/CTQ2017-85317-C2-1-P/ES/APLICACION DE TECNICAS AVANZADAS DE MICROSCOPIA EN EL ESTUDIO DEL PATRIMONIO CERAMICO Y VITREO/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Conservación y Restauración de Bienes Culturales - Departament de Conservació i Restauració de Béns Culturals | es_ES |
dc.description.bibliographicCitation | Di Fazio, M.; Felici, AC.; Catalli, F.; Domenech Carbo, MT.; De Vito, C.; Doménech-Carbó, A. (2020). Solid-state electrochemical characterization of emissions and authorities producing Roman brass coins. Microchemical Journal. 152:1-9. https://doi.org/10.1016/j.microc.2019.104306 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.1016/j.microc.2019.104306 | es_ES |
dc.description.upvformatpinicio | 1 | es_ES |
dc.description.upvformatpfin | 9 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 152 | es_ES |
dc.relation.pasarela | S\423714 | es_ES |
dc.contributor.funder | Agencia Estatal de Investigación | es_ES |
dc.contributor.funder | European Regional Development Fund | es_ES |
dc.contributor.funder | Ministerio de Economía y Competitividad | es_ES |
dc.description.references | Craddock, P. T. (1978). The composition of the copper alloys used by the Greek, Etruscan and Roman civilizations. Journal of Archaeological Science, 5(1), 1-16. doi:10.1016/0305-4403(78)90015-8 | es_ES |
dc.description.references | Rehren, T. (1999). Small Size, Large Scale Roman Brass Production in Germania Inferior. Journal of Archaeological Science, 26(8), 1083-1087. doi:10.1006/jasc.1999.0402 | es_ES |
dc.description.references | Martini, C., Chiavari, C., Ospitali, F., Grazzi, F., Scherillo, A., Soffritti, C., & Garagnani, G. L. (2013). Investigations on a brass armour: Authentic or forgery? Materials Chemistry and Physics, 142(1), 229-237. doi:10.1016/j.matchemphys.2013.07.010 | es_ES |
dc.description.references | Barrena, M. I., Gómez de Salazar, J. M., & Soria, A. (2008). Corrosion of brass archaeological blinker: Characterisation of natural degradation process. Materials Letters, 62(24), 3944-3946. doi:10.1016/j.matlet.2008.05.015 | es_ES |
dc.description.references | Bourgarit, D., & Bauchau, F. (2010). The ancient brass cementation processes revisited by extensive experimental simulation. JOM, 62(3), 27-33. doi:10.1007/s11837-010-0045-3 | es_ES |
dc.description.references | Constantinides, I., Adriaens, A., & Adams, F. (2002). Surface characterization of artificial corrosion layers on copper alloy reference materials. Applied Surface Science, 189(1-2), 90-101. doi:10.1016/s0169-4332(02)00005-3 | es_ES |
dc.description.references | Peris-Vicente, J., Valle-Algarra, F. M., Ferrer-Eres, M. A., Gimeno-Adelantado, J. ., Mateo-Castro, R., & Soriano-Piñol, M. D. (2008). Archaeometrical study of paleometallurgical materials from the archaeological site «Cerro de las Balsas — Chinchorro» (La Albufereta, Alacant, Spain). Microchemical Journal, 90(2), 142-146. doi:10.1016/j.microc.2008.05.003 | es_ES |
dc.description.references | Ferrer-Eres, M. A., Peris-Vicente, J., Valle-Algarra, F. M., Gimeno-Adelantado, J. V., Sánchez-Ramos, S., & Soriano-Piñol, M. D. (2010). Archaeopolymetallurgical study of materials from an Iberian culture site in Spain by scanning electron microscopy with X-ray microanalysis, chemometrics and image analysis. Microchemical Journal, 95(2), 298-305. doi:10.1016/j.microc.2010.01.003 | es_ES |
dc.description.references | Del Hoyo-Meléndez, J. M., Świt, P., Matosz, M., Woźniak, M., Klisińska-Kopacz, A., & Bratasz, Ł. (2015). Micro-XRF analysis of silver coins from medieval Poland. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 349, 6-16. doi:10.1016/j.nimb.2015.02.018 | es_ES |
dc.description.references | Carl, M., & Young, M. L. (2016). Complementary analytical methods for analysis of Ag-plated cultural heritage objects. Microchemical Journal, 126, 307-315. doi:10.1016/j.microc.2015.12.019 | es_ES |
dc.description.references | Lutterotti, L., Dell’Amore, F., Angelucci, D. E., Carrer, F., & Gialanella, S. (2016). Combined X-ray diffraction and fluorescence analysis in the cultural heritage field. Microchemical Journal, 126, 423-430. doi:10.1016/j.microc.2015.12.031 | es_ES |
dc.description.references | Agresti, J., Osticioli, I., Guidotti, M. C., Kardjilov, N., & Siano, S. (2016). Non-invasive archaeometallurgical approach to the investigations of bronze figurines using neutron, laser, and X-ray techniques. Microchemical Journal, 124, 765-774. doi:10.1016/j.microc.2015.10.030 | es_ES |
dc.description.references | Gomes, S. S., Soares, A. M., Araújo, M. F., & Correia, V. H. (2016). Lead isotopes and elemental composition of Roman fistulae plumbeae aquariae from Conimbriga (Portugal) using Quadrupole ICP-MS. Microchemical Journal, 129, 184-193. doi:10.1016/j.microc.2016.06.027 | es_ES |
dc.description.references | Robbiola, L., & Portier, R. (2006). A global approach to the authentication of ancient bronzes based on the characterization of the alloy–patina–environment system. Journal of Cultural Heritage, 7(1), 1-12. doi:10.1016/j.culher.2005.11.001 | es_ES |
dc.description.references | Robbiola, L., Blengino, J.-M., & Fiaud, C. (1998). Morphology and mechanisms of formation of natural patinas on archaeological Cu–Sn alloys. Corrosion Science, 40(12), 2083-2111. doi:10.1016/s0010-938x(98)00096-1 | es_ES |
dc.description.references | Mattsson, E. (1980). Corrosion of Copper and Brass: Practical Experience in relation to Basic Data. British Corrosion Journal, 15(1), 6-13. doi:10.1179/000705980798318708 | es_ES |
dc.description.references | Marshakov, I. K. (2005). Corrosion Resistance and Dezincing of Brasses. Protection of Metals, 41(3), 205-210. doi:10.1007/s11124-005-0031-2 | es_ES |
dc.description.references | Sohn, S., & Kang, T. (2002). The effects of tin and nickel on the corrosion behavior of 60Cu–40Zn alloys. Journal of Alloys and Compounds, 335(1-2), 281-289. doi:10.1016/s0925-8388(01)01839-4 | es_ES |
dc.description.references | Campanella, L., Alessandri, O. C., Ferretti, M., & Plattner, S. H. (2009). The effect of tin on dezincification of archaeological copper alloys. Corrosion Science, 51(9), 2183-2191. doi:10.1016/j.corsci.2009.05.047 | es_ES |
dc.description.references | Doménech-Carbó, A., Doménech-Carbó, M., & Martínez-Lázaro, I. (2007). Electrochemical identification of bronze corrosion products in archaeological artefacts. A case study. Microchimica Acta, 162(3-4), 351-359. doi:10.1007/s00604-007-0839-3 | es_ES |
dc.description.references | Costa, V., Leyssens, K., Adriaens, A., Richard, N., & Scholz, F. (2009). Electrochemistry reveals archaeological materials. Journal of Solid State Electrochemistry, 14(3), 449-451. doi:10.1007/s10008-009-0864-8 | es_ES |
dc.description.references | Arjmand, F., & Adriaens, A. (2011). Electrochemical quantification of copper-based alloys using voltammetry of microparticles: optimization of the experimental conditions. Journal of Solid State Electrochemistry, 16(2), 535-543. doi:10.1007/s10008-011-1365-0 | es_ES |
dc.description.references | Serghini-Idrissi, M., Bernard, M. C., Harrif, F. Z., Joiret, S., Rahmouni, K., Srhiri, A., … Ziani, M. (2005). Electrochemical and spectroscopic characterizations of patinas formed on an archaeological bronze coin. Electrochimica Acta, 50(24), 4699-4709. doi:10.1016/j.electacta.2005.01.050 | es_ES |
dc.description.references | Šatović, D., Martinez, S., & Bobrowski, A. (2010). Electrochemical identification of corrosion products on historical and archaeological bronzes using the voltammetry of micro-particles attached to a carbon paste electrode. Talanta, 81(4-5), 1760-1765. doi:10.1016/j.talanta.2010.03.037 | es_ES |
dc.description.references | Cepriá, G., Aranda, C., Pérez-Arantegui, J., Lacueva, F., & Castillo, J. R. (2001). Voltammetry of immobilised microparticles: a powerful analytical technique to study the physical and chemical composition of brass. Journal of Electroanalytical Chemistry, 513(1), 52-58. doi:10.1016/s0022-0728(01)00599-x | es_ES |
dc.description.references | Doménech-Carbó, A. (2009). Voltammetric methods applied to identification, speciation, and quantification of analytes from works of art: an overview. Journal of Solid State Electrochemistry, 14(3), 363-379. doi:10.1007/s10008-009-0858-6 | es_ES |
dc.description.references | Doménech-Carbó, A., & Doménech-Carbó, M. T. (2017). Electroanalytical techniques in archaeological and art conservation. Pure and Applied Chemistry, 90(3), 447-461. doi:10.1515/pac-2017-0508 | es_ES |
dc.description.references | Doménech-Carbo, A. (2017). Electrochemical dating: a review. Journal of Solid State Electrochemistry, 21(7), 1987-1998. doi:10.1007/s10008-017-3620-5 | es_ES |
dc.description.references | Doménech-Carbó, A., & Scholz, F. (2019). Electrochemical Age Determinations of Metallic Specimens—Utilization of the Corrosion Clock. Accounts of Chemical Research, 52(2), 400-406. doi:10.1021/acs.accounts.8b00472 | es_ES |
dc.description.references | Doménech-Carbó, A., Doménech-Carbó, M. T., Capelo, S., Pasíes, T., & Martínez-Lázaro, I. (2014). Dating Archaeological Copper/Bronze Artifacts by Using the Voltammetry of Microparticles. Angewandte Chemie International Edition, 53(35), 9262-9266. doi:10.1002/anie.201404522 | es_ES |
dc.description.references | Di Fazio, M., Felici, A. C., Catalli, F., & De Vito, C. (2019). Microstructure and chemical composition of Roman orichalcum coins emitted after the monetary reform of Augustus (23 B.C.). Scientific Reports, 9(1). doi:10.1038/s41598-019-48941-4 | es_ES |
dc.description.references | Doménech-Carbó, M. T., Álvarez-Romero, C., Doménech-Carbó, A., Osete-Cortina, L., & Martínez-Bazán, M. L. (2019). Microchemical surface analysis of historic copper-based coins by the combined use of FIB-FESEM-EDX, OM, FTIR spectroscopy and solid-state electrochemical techniques. Microchemical Journal, 148, 573-581. doi:10.1016/j.microc.2019.05.039 | es_ES |
dc.description.references | Doménech-Carbó, A., del Hoyo-Meléndez, J. M., Doménech-Carbó, M. T., & Piquero-Cilla, J. (2017). Electrochemical analysis of the first Polish coins using voltammetry of immobilized particles. Microchemical Journal, 130, 47-55. doi:10.1016/j.microc.2016.07.020 | es_ES |
dc.description.references | Di Turo, F., Montoya, N., Piquero-Cilla, J., De Vito, C., Coletti, F., Favero, G., & Doménech-Carbó, A. (2017). Archaeometric analysis of Roman bronze coins from the Magna Mater temple using solid-state voltammetry and electrochemical impedance spectroscopy. Analytica Chimica Acta, 955, 36-47. doi:10.1016/j.aca.2016.12.007 | es_ES |
dc.description.references | Di Turo, F., Montoya, N., Piquero-Cilla, J., De Vito, C., Coletti, F., Favero, G., … Doménech-Carbó, A. (2017). Dating Archaeological Strata in theMagna MaterTemple Using Solid-state Voltammetric Analysis of Leaded Bronze Coins. Electroanalysis, 30(2), 361-370. doi:10.1002/elan.201700724 | es_ES |
dc.description.references | Doménech‐Carbó, A., Doménech‐Carbó, M. T., Álvarez‐Romero, C., Pasíes, T., & Buendía, M. (2019). Screening of Iberian Coinage in the 2 th ‐1 th BCE Period Using the Voltammetry of Immobilized Particles. Electroanalysis, 31(6), 1164-1173. doi:10.1002/elan.201900090 | es_ES |
dc.description.references | Doménech-Carbó, A., Doménech-Carbó, M. T., Montagna, E., Álvarez-Romero, C., & Lee, Y. (2017). Electrochemical discrimination of mints: The last Chinese emperors Kuang Hsü and Hsüan T’ung monetary unification. Talanta, 169, 50-56. doi:10.1016/j.talanta.2017.03.025 | es_ES |
dc.description.references | Doménech-Carbó, A., Doménech-Carbó, M. T., Redondo-Marugán, J., Osete-Cortina, L., & Vivancos-Ramón, M. V. (2015). Electrochemical Characterization of Corrosion Products in Leaded Bronze Sculptures Considering Ohmic Drop Effects on Tafel Analysis. Electroanalysis, 28(4), 833-845. doi:10.1002/elan.201500613 | es_ES |
dc.description.references | Doménech-Carbó, A., Doménech-Carbó, M. T., Redondo-Marugán, J., Osete-Cortina, L., Barrio, J., Fuentes, A., … Pasíes, T. (2017). Electrochemical Characterization and Dating of Archaeological Leaded Bronze Objects Using the Voltammetry of Immobilized Particles. Archaeometry, 60(2), 308-324. doi:10.1111/arcm.12308 | es_ES |
dc.description.references | Griesser, M., Kockelmann, W., Hradil, K., & Traum, R. (2016). New insights into the manufacturing technique and corrosion of high leaded antique bronze coins. Microchemical Journal, 126, 181-193. doi:10.1016/j.microc.2015.12.002 | es_ES |
dc.description.references | Klein, S., Lahaye, Y., Brey, G. P., & von Kaenel, H.-M. (2004). The early roman imperial AES coinage II: Tracing the copper sources by analysis of lead and copper isotopes-copper coins of Augustus and Tiberius*. Archaeometry, 46(3), 469-480. doi:10.1111/j.1475-4754.2004.00168.x | es_ES |
dc.description.references | DERAISME, A., & BARRANDON, J.-N. (2008). UNOFFICIAL COINAGE IN THE THIRD CENTURY ad IN THE GALLO-ROMAN WORLD: CHEMICAL AND PHYSICAL ANALYSES FOR DETERMINING THE LOCALIZATION OF THE WORKSHOP*. Archaeometry, 50(5), 835-854. doi:10.1111/j.1475-4754.2007.00366.x | es_ES |