Craddock, P. T. (1978). The composition of the copper alloys used by the Greek, Etruscan and Roman civilizations. Journal of Archaeological Science, 5(1), 1-16. doi:10.1016/0305-4403(78)90015-8
Rehren, T. (1999). Small Size, Large Scale Roman Brass Production in Germania Inferior. Journal of Archaeological Science, 26(8), 1083-1087. doi:10.1006/jasc.1999.0402
Martini, C., Chiavari, C., Ospitali, F., Grazzi, F., Scherillo, A., Soffritti, C., & Garagnani, G. L. (2013). Investigations on a brass armour: Authentic or forgery? Materials Chemistry and Physics, 142(1), 229-237. doi:10.1016/j.matchemphys.2013.07.010
[+]
Craddock, P. T. (1978). The composition of the copper alloys used by the Greek, Etruscan and Roman civilizations. Journal of Archaeological Science, 5(1), 1-16. doi:10.1016/0305-4403(78)90015-8
Rehren, T. (1999). Small Size, Large Scale Roman Brass Production in Germania Inferior. Journal of Archaeological Science, 26(8), 1083-1087. doi:10.1006/jasc.1999.0402
Martini, C., Chiavari, C., Ospitali, F., Grazzi, F., Scherillo, A., Soffritti, C., & Garagnani, G. L. (2013). Investigations on a brass armour: Authentic or forgery? Materials Chemistry and Physics, 142(1), 229-237. doi:10.1016/j.matchemphys.2013.07.010
Barrena, M. I., Gómez de Salazar, J. M., & Soria, A. (2008). Corrosion of brass archaeological blinker: Characterisation of natural degradation process. Materials Letters, 62(24), 3944-3946. doi:10.1016/j.matlet.2008.05.015
Bourgarit, D., & Bauchau, F. (2010). The ancient brass cementation processes revisited by extensive experimental simulation. JOM, 62(3), 27-33. doi:10.1007/s11837-010-0045-3
Constantinides, I., Adriaens, A., & Adams, F. (2002). Surface characterization of artificial corrosion layers on copper alloy reference materials. Applied Surface Science, 189(1-2), 90-101. doi:10.1016/s0169-4332(02)00005-3
Peris-Vicente, J., Valle-Algarra, F. M., Ferrer-Eres, M. A., Gimeno-Adelantado, J. ., Mateo-Castro, R., & Soriano-Piñol, M. D. (2008). Archaeometrical study of paleometallurgical materials from the archaeological site «Cerro de las Balsas — Chinchorro» (La Albufereta, Alacant, Spain). Microchemical Journal, 90(2), 142-146. doi:10.1016/j.microc.2008.05.003
Ferrer-Eres, M. A., Peris-Vicente, J., Valle-Algarra, F. M., Gimeno-Adelantado, J. V., Sánchez-Ramos, S., & Soriano-Piñol, M. D. (2010). Archaeopolymetallurgical study of materials from an Iberian culture site in Spain by scanning electron microscopy with X-ray microanalysis, chemometrics and image analysis. Microchemical Journal, 95(2), 298-305. doi:10.1016/j.microc.2010.01.003
Del Hoyo-Meléndez, J. M., Świt, P., Matosz, M., Woźniak, M., Klisińska-Kopacz, A., & Bratasz, Ł. (2015). Micro-XRF analysis of silver coins from medieval Poland. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 349, 6-16. doi:10.1016/j.nimb.2015.02.018
Carl, M., & Young, M. L. (2016). Complementary analytical methods for analysis of Ag-plated cultural heritage objects. Microchemical Journal, 126, 307-315. doi:10.1016/j.microc.2015.12.019
Lutterotti, L., Dell’Amore, F., Angelucci, D. E., Carrer, F., & Gialanella, S. (2016). Combined X-ray diffraction and fluorescence analysis in the cultural heritage field. Microchemical Journal, 126, 423-430. doi:10.1016/j.microc.2015.12.031
Agresti, J., Osticioli, I., Guidotti, M. C., Kardjilov, N., & Siano, S. (2016). Non-invasive archaeometallurgical approach to the investigations of bronze figurines using neutron, laser, and X-ray techniques. Microchemical Journal, 124, 765-774. doi:10.1016/j.microc.2015.10.030
Gomes, S. S., Soares, A. M., Araújo, M. F., & Correia, V. H. (2016). Lead isotopes and elemental composition of Roman fistulae plumbeae aquariae from Conimbriga (Portugal) using Quadrupole ICP-MS. Microchemical Journal, 129, 184-193. doi:10.1016/j.microc.2016.06.027
Robbiola, L., & Portier, R. (2006). A global approach to the authentication of ancient bronzes based on the characterization of the alloy–patina–environment system. Journal of Cultural Heritage, 7(1), 1-12. doi:10.1016/j.culher.2005.11.001
Robbiola, L., Blengino, J.-M., & Fiaud, C. (1998). Morphology and mechanisms of formation of natural patinas on archaeological Cu–Sn alloys. Corrosion Science, 40(12), 2083-2111. doi:10.1016/s0010-938x(98)00096-1
Mattsson, E. (1980). Corrosion of Copper and Brass: Practical Experience in relation to Basic Data. British Corrosion Journal, 15(1), 6-13. doi:10.1179/000705980798318708
Marshakov, I. K. (2005). Corrosion Resistance and Dezincing of Brasses. Protection of Metals, 41(3), 205-210. doi:10.1007/s11124-005-0031-2
Sohn, S., & Kang, T. (2002). The effects of tin and nickel on the corrosion behavior of 60Cu–40Zn alloys. Journal of Alloys and Compounds, 335(1-2), 281-289. doi:10.1016/s0925-8388(01)01839-4
Campanella, L., Alessandri, O. C., Ferretti, M., & Plattner, S. H. (2009). The effect of tin on dezincification of archaeological copper alloys. Corrosion Science, 51(9), 2183-2191. doi:10.1016/j.corsci.2009.05.047
Doménech-Carbó, A., Doménech-Carbó, M., & Martínez-Lázaro, I. (2007). Electrochemical identification of bronze corrosion products in archaeological artefacts. A case study. Microchimica Acta, 162(3-4), 351-359. doi:10.1007/s00604-007-0839-3
Costa, V., Leyssens, K., Adriaens, A., Richard, N., & Scholz, F. (2009). Electrochemistry reveals archaeological materials. Journal of Solid State Electrochemistry, 14(3), 449-451. doi:10.1007/s10008-009-0864-8
Arjmand, F., & Adriaens, A. (2011). Electrochemical quantification of copper-based alloys using voltammetry of microparticles: optimization of the experimental conditions. Journal of Solid State Electrochemistry, 16(2), 535-543. doi:10.1007/s10008-011-1365-0
Serghini-Idrissi, M., Bernard, M. C., Harrif, F. Z., Joiret, S., Rahmouni, K., Srhiri, A., … Ziani, M. (2005). Electrochemical and spectroscopic characterizations of patinas formed on an archaeological bronze coin. Electrochimica Acta, 50(24), 4699-4709. doi:10.1016/j.electacta.2005.01.050
Šatović, D., Martinez, S., & Bobrowski, A. (2010). Electrochemical identification of corrosion products on historical and archaeological bronzes using the voltammetry of micro-particles attached to a carbon paste electrode. Talanta, 81(4-5), 1760-1765. doi:10.1016/j.talanta.2010.03.037
Cepriá, G., Aranda, C., Pérez-Arantegui, J., Lacueva, F., & Castillo, J. R. (2001). Voltammetry of immobilised microparticles: a powerful analytical technique to study the physical and chemical composition of brass. Journal of Electroanalytical Chemistry, 513(1), 52-58. doi:10.1016/s0022-0728(01)00599-x
Doménech-Carbó, A. (2009). Voltammetric methods applied to identification, speciation, and quantification of analytes from works of art: an overview. Journal of Solid State Electrochemistry, 14(3), 363-379. doi:10.1007/s10008-009-0858-6
Doménech-Carbó, A., & Doménech-Carbó, M. T. (2017). Electroanalytical techniques in archaeological and art conservation. Pure and Applied Chemistry, 90(3), 447-461. doi:10.1515/pac-2017-0508
Doménech-Carbo, A. (2017). Electrochemical dating: a review. Journal of Solid State Electrochemistry, 21(7), 1987-1998. doi:10.1007/s10008-017-3620-5
Doménech-Carbó, A., & Scholz, F. (2019). Electrochemical Age Determinations of Metallic Specimens—Utilization of the Corrosion Clock. Accounts of Chemical Research, 52(2), 400-406. doi:10.1021/acs.accounts.8b00472
Doménech-Carbó, A., Doménech-Carbó, M. T., Capelo, S., Pasíes, T., & Martínez-Lázaro, I. (2014). Dating Archaeological Copper/Bronze Artifacts by Using the Voltammetry of Microparticles. Angewandte Chemie International Edition, 53(35), 9262-9266. doi:10.1002/anie.201404522
Di Fazio, M., Felici, A. C., Catalli, F., & De Vito, C. (2019). Microstructure and chemical composition of Roman orichalcum coins emitted after the monetary reform of Augustus (23 B.C.). Scientific Reports, 9(1). doi:10.1038/s41598-019-48941-4
Doménech-Carbó, M. T., Álvarez-Romero, C., Doménech-Carbó, A., Osete-Cortina, L., & Martínez-Bazán, M. L. (2019). Microchemical surface analysis of historic copper-based coins by the combined use of FIB-FESEM-EDX, OM, FTIR spectroscopy and solid-state electrochemical techniques. Microchemical Journal, 148, 573-581. doi:10.1016/j.microc.2019.05.039
Doménech-Carbó, A., del Hoyo-Meléndez, J. M., Doménech-Carbó, M. T., & Piquero-Cilla, J. (2017). Electrochemical analysis of the first Polish coins using voltammetry of immobilized particles. Microchemical Journal, 130, 47-55. doi:10.1016/j.microc.2016.07.020
Di Turo, F., Montoya, N., Piquero-Cilla, J., De Vito, C., Coletti, F., Favero, G., & Doménech-Carbó, A. (2017). Archaeometric analysis of Roman bronze coins from the Magna Mater temple using solid-state voltammetry and electrochemical impedance spectroscopy. Analytica Chimica Acta, 955, 36-47. doi:10.1016/j.aca.2016.12.007
Di Turo, F., Montoya, N., Piquero-Cilla, J., De Vito, C., Coletti, F., Favero, G., … Doménech-Carbó, A. (2017). Dating Archaeological Strata in theMagna MaterTemple Using Solid-state Voltammetric Analysis of Leaded Bronze Coins. Electroanalysis, 30(2), 361-370. doi:10.1002/elan.201700724
Doménech‐Carbó, A., Doménech‐Carbó, M. T., Álvarez‐Romero, C., Pasíes, T., & Buendía, M. (2019). Screening of Iberian Coinage in the 2
th
‐1
th
BCE Period Using the Voltammetry of Immobilized Particles. Electroanalysis, 31(6), 1164-1173. doi:10.1002/elan.201900090
Doménech-Carbó, A., Doménech-Carbó, M. T., Montagna, E., Álvarez-Romero, C., & Lee, Y. (2017). Electrochemical discrimination of mints: The last Chinese emperors Kuang Hsü and Hsüan T’ung monetary unification. Talanta, 169, 50-56. doi:10.1016/j.talanta.2017.03.025
Doménech-Carbó, A., Doménech-Carbó, M. T., Redondo-Marugán, J., Osete-Cortina, L., & Vivancos-Ramón, M. V. (2015). Electrochemical Characterization of Corrosion Products in Leaded Bronze Sculptures Considering Ohmic Drop Effects on Tafel Analysis. Electroanalysis, 28(4), 833-845. doi:10.1002/elan.201500613
Doménech-Carbó, A., Doménech-Carbó, M. T., Redondo-Marugán, J., Osete-Cortina, L., Barrio, J., Fuentes, A., … Pasíes, T. (2017). Electrochemical Characterization and Dating of Archaeological Leaded Bronze Objects Using the Voltammetry of Immobilized Particles. Archaeometry, 60(2), 308-324. doi:10.1111/arcm.12308
Griesser, M., Kockelmann, W., Hradil, K., & Traum, R. (2016). New insights into the manufacturing technique and corrosion of high leaded antique bronze coins. Microchemical Journal, 126, 181-193. doi:10.1016/j.microc.2015.12.002
Klein, S., Lahaye, Y., Brey, G. P., & von Kaenel, H.-M. (2004). The early roman imperial AES coinage II: Tracing the copper sources by analysis of lead and copper isotopes-copper coins of Augustus and Tiberius*. Archaeometry, 46(3), 469-480. doi:10.1111/j.1475-4754.2004.00168.x
DERAISME, A., & BARRANDON, J.-N. (2008). UNOFFICIAL COINAGE IN THE THIRD CENTURY ad IN THE GALLO-ROMAN WORLD: CHEMICAL AND PHYSICAL ANALYSES FOR DETERMINING THE LOCALIZATION OF THE WORKSHOP*. Archaeometry, 50(5), 835-854. doi:10.1111/j.1475-4754.2007.00366.x
[-]