- -

Sustainable Carbon as Efficient Support for Metal-Based Nanocatalyst: Applications in Energy Harvesting and Storage

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Sustainable Carbon as Efficient Support for Metal-Based Nanocatalyst: Applications in Energy Harvesting and Storage

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Buaki-Sogo, Mireia es_ES
dc.contributor.author Zubizarreta Saenz De Zaitegui, Leire es_ES
dc.contributor.author GARCÍA PELLICER, MARTA es_ES
dc.contributor.author Quijano-Lopez, Alfredo es_ES
dc.date.accessioned 2021-09-14T03:33:46Z
dc.date.available 2021-09-14T03:33:46Z
dc.date.issued 2020-07 es_ES
dc.identifier.uri http://hdl.handle.net/10251/172318
dc.description.abstract [EN] Sustainable activated carbon can be obtained from the pyrolysis/activation of biomass wastes coming from different origins. Carbon obtained in this way shows interesting properties, such as high surface area, electrical conductivity, thermal and chemical stability, and porosity. These characteristics among others, such as a tailored pore size distribution and the possibility of functionalization, lead to an increased use of activated carbons in catalysis. The use of activated carbons from biomass origins is a step forward in the development of more sustainable processes enhancing material recycling and reuse in the frame of a circular economy. In this article, a perspective of different heterogeneous catalysts based on sustainable activated carbon from biomass origins will be analyzed focusing on their properties and catalytic performance for determined energy-related applications. In this way, the article aims to give the reader a scope of the potential of these tailor-made sustainable materials as a support in heterogeneous catalysis and future developments needed to improve catalyst performance. The selected applications are those related with H2 energy and the production of biomethane for energy through CO2 methanation. es_ES
dc.description.sponsorship This research was funded by the Centro de Desarrollo Tecnologico Industrial-CDTI (ALMAGRID Project-CER-20191006), by the Instituto Valenciano de Competitividad Empresarial-IVACE-FEDER (BIO3 Project-IMDEEA/2019/44) and by the Agencia Valenciana de Investigacion-AVI (REWACER Project INNEST00/19/050). es_ES
dc.language Inglés es_ES
dc.publisher MDPI AG es_ES
dc.relation.ispartof Molecules es_ES
dc.rights Reconocimiento (by) es_ES
dc.subject Biomass es_ES
dc.subject Biochar es_ES
dc.subject Metal nanocatalyst es_ES
dc.subject Methanation reaction es_ES
dc.subject Sustainable carbon es_ES
dc.subject Energy storage es_ES
dc.subject.classification INGENIERIA ELECTRICA es_ES
dc.title Sustainable Carbon as Efficient Support for Metal-Based Nanocatalyst: Applications in Energy Harvesting and Storage es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.3390/molecules25143123 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/CDTI//CER-20191006/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/IVACE//IMDEEA%2F2019%2F44/ES/Gestión sostenible de los recursos: BIOmasa para BIOenergía y BIOproductos de alto valor añadido (BIO3)/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/AVI//INNEST00%2F19%2F050/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto de Tecnología Eléctrica - Institut de Tecnologia Elèctrica es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Ingeniería Eléctrica - Departament d'Enginyeria Elèctrica es_ES
dc.description.bibliographicCitation Buaki-Sogo, M.; Zubizarreta Saenz De Zaitegui, L.; García Pellicer, M.; Quijano-Lopez, A. (2020). Sustainable Carbon as Efficient Support for Metal-Based Nanocatalyst: Applications in Energy Harvesting and Storage. Molecules. 25(14):1-17. https://doi.org/10.3390/molecules25143123 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.3390/molecules25143123 es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 17 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 25 es_ES
dc.description.issue 14 es_ES
dc.identifier.eissn 1420-3049 es_ES
dc.identifier.pmid 32650543 es_ES
dc.identifier.pmcid PMC7397297 es_ES
dc.relation.pasarela S\431252 es_ES
dc.contributor.funder European Regional Development Fund es_ES
dc.contributor.funder Agència Valenciana de la Innovació es_ES
dc.contributor.funder Centro para el Desarrollo Tecnológico Industrial es_ES
dc.contributor.funder Institut Valencià de Competitivitat Empresarial es_ES
dc.description.references Updated Bioeconomy Strategyhttps://ec.europa.eu/knowledge4policy/node/34337_es es_ES
dc.description.references Sharma, H. K., Xu, C., & Qin, W. (2017). Biological Pretreatment of Lignocellulosic Biomass for Biofuels and Bioproducts: An Overview. Waste and Biomass Valorization, 10(2), 235-251. doi:10.1007/s12649-017-0059-y es_ES
dc.description.references González-García, S., Gullón, B., Rivas, S., Feijoo, G., & Moreira, M. T. (2016). Environmental performance of biomass refining into high-added value compounds. Journal of Cleaner Production, 120, 170-180. doi:10.1016/j.jclepro.2016.02.015 es_ES
dc.description.references Liu, W.-J., Jiang, H., & Yu, H.-Q. (2019). Emerging applications of biochar-based materials for energy storage and conversion. Energy & Environmental Science, 12(6), 1751-1779. doi:10.1039/c9ee00206e es_ES
dc.description.references Maneerung, T., Liew, J., Dai, Y., Kawi, S., Chong, C., & Wang, C.-H. (2016). Activated carbon derived from carbon residue from biomass gasification and its application for dye adsorption: Kinetics, isotherms and thermodynamic studies. Bioresource Technology, 200, 350-359. doi:10.1016/j.biortech.2015.10.047 es_ES
dc.description.references Hu, B., Wang, K., Wu, L., Yu, S.-H., Antonietti, M., & Titirici, M.-M. (2010). Engineering Carbon Materials from the Hydrothermal Carbonization Process of Biomass. Advanced Materials, 22(7), 813-828. doi:10.1002/adma.200902812 es_ES
dc.description.references Xiu, S., Shahbazi, A., & Li, R. (2017). Characterization, Modification and Application of Biochar for Energy Storage and Catalysis: A Review. Trends in Renewable Energy, 3(1), 86-101. doi:10.17737/tre.2017.3.1.0033 es_ES
dc.description.references Khezami, L., Chetouani, A., Taouk, B., & Capart, R. (2005). Production and characterisation of activated carbon from wood components in powder: Cellulose, lignin, xylan. Powder Technology, 157(1-3), 48-56. doi:10.1016/j.powtec.2005.05.009 es_ES
dc.description.references Contescu, C., Adhikari, S., Gallego, N., Evans, N., & Biss, B. (2018). Activated Carbons Derived from High-Temperature Pyrolysis of Lignocellulosic Biomass. C, 4(3), 51. doi:10.3390/c4030051 es_ES
dc.description.references IOANNIDOU, O., & ZABANIOTOU, A. (2007). Agricultural residues as precursors for activated carbon production—A review. Renewable and Sustainable Energy Reviews, 11(9), 1966-2005. doi:10.1016/j.rser.2006.03.013 es_ES
dc.description.references Namaalwa, J., Sankhayan, P. L., & Hofstad, O. (2007). A dynamic bio-economic model for analyzing deforestation and degradation: An application to woodlands in Uganda. Forest Policy and Economics, 9(5), 479-495. doi:10.1016/j.forpol.2006.01.001 es_ES
dc.description.references Tomczyk, A., Sokołowska, Z., & Boguta, P. (2020). Biochar physicochemical properties: pyrolysis temperature and feedstock kind effects. Reviews in Environmental Science and Bio/Technology, 19(1), 191-215. doi:10.1007/s11157-020-09523-3 es_ES
dc.description.references Lee, J., Kim, K.-H., & Kwon, E. E. (2017). Biochar as a Catalyst. Renewable and Sustainable Energy Reviews, 77, 70-79. doi:10.1016/j.rser.2017.04.002 es_ES
dc.description.references Prati, L., Bergna, D., Villa, A., Spontoni, P., Bianchi, C. L., Hu, T., … Lassi, U. (2018). Carbons from second generation biomass as sustainable supports for catalytic systems. Catalysis Today, 301, 239-243. doi:10.1016/j.cattod.2017.03.007 es_ES
dc.description.references Shen, Y., Zhao, P., & Shao, Q. (2014). Porous silica and carbon derived materials from rice husk pyrolysis char. Microporous and Mesoporous Materials, 188, 46-76. doi:10.1016/j.micromeso.2014.01.005 es_ES
dc.description.references Azargohar, R., & Dalai, A. K. (2008). Steam and KOH activation of biochar: Experimental and modeling studies. Microporous and Mesoporous Materials, 110(2-3), 413-421. doi:10.1016/j.micromeso.2007.06.047 es_ES
dc.description.references Weber, K., & Quicker, P. (2018). Properties of biochar. Fuel, 217, 240-261. doi:10.1016/j.fuel.2017.12.054 es_ES
dc.description.references Lam, E., & Luong, J. H. T. (2014). Carbon Materials as Catalyst Supports and Catalysts in the Transformation of Biomass to Fuels and Chemicals. ACS Catalysis, 4(10), 3393-3410. doi:10.1021/cs5008393 es_ES
dc.description.references Thommes, M., Kaneko, K., Neimark, A. V., Olivier, J. P., Rodriguez-Reinoso, F., Rouquerol, J., & Sing, K. S. W. (2015). Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report). Pure and Applied Chemistry, 87(9-10), 1051-1069. doi:10.1515/pac-2014-1117 es_ES
dc.description.references Jagiello, J., Kenvin, J., Celzard, A., & Fierro, V. (2019). Enhanced resolution of ultra micropore size determination of biochars and activated carbons by dual gas analysis using N2 and CO2 with 2D-NLDFT adsorption models. Carbon, 144, 206-215. doi:10.1016/j.carbon.2018.12.028 es_ES
dc.description.references Jagiello, J., Kenvin, J., Ania, C. O., Parra, J. B., Celzard, A., & Fierro, V. (2020). Exploiting the adsorption of simple gases O2 and H2 with minimal quadrupole moments for the dual gas characterization of nanoporous carbons using 2D-NLDFT models. Carbon, 160, 164-175. doi:10.1016/j.carbon.2020.01.013 es_ES
dc.description.references Buaki-Sogo, M., Garcia, H., & Aprile, C. (2015). Imidazolium-based silica microreactors for the efficient conversion of carbon dioxide. Catalysis Science & Technology, 5(2), 1222-1230. doi:10.1039/c4cy01258e es_ES
dc.description.references Buaki-Sogó, M., Vivian, A., Bivona, L. A., García, H., Gruttadauria, M., & Aprile, C. (2016). Imidazolium functionalized carbon nanotubes for the synthesis of cyclic carbonates: reducing the gap between homogeneous and heterogeneous catalysis. Catalysis Science & Technology, 6(24), 8418-8427. doi:10.1039/c6cy01068g es_ES
dc.description.references Somerville, M., & Jahanshahi, S. (2015). The effect of temperature and compression during pyrolysis on the density of charcoal made from Australian eucalypt wood. Renewable Energy, 80, 471-478. doi:10.1016/j.renene.2015.02.013 es_ES
dc.description.references Brewer, C. E., Chuang, V. J., Masiello, C. A., Gonnermann, H., Gao, X., Dugan, B., … Davies, C. A. (2014). New approaches to measuring biochar density and porosity. Biomass and Bioenergy, 66, 176-185. doi:10.1016/j.biombioe.2014.03.059 es_ES
dc.description.references Anovitz, L. M., & Cole, D. R. (2015). Characterization and Analysis of Porosity and Pore Structures. Reviews in Mineralogy and Geochemistry, 80(1), 61-164. doi:10.2138/rmg.2015.80.04 es_ES
dc.description.references Wang, R., Sang, S., Zhu, D., Liu, S., & Yu, K. (2017). Pore characteristics and controlling factors of the Lower Cambrian Hetang Formation shale in Northeast Jiangxi, China. Energy Exploration & Exploitation, 36(1), 43-65. doi:10.1177/0144598717723814 es_ES
dc.description.references Pasel, J., Käßner, P., Montanari, B., Gazzano, M., Vaccari, A., Makowski, W., … Papp, H. (1998). Transition metal oxides supported on active carbons as low temperature catalysts for the selective catalytic reduction (SCR) of NO with NH3. Applied Catalysis B: Environmental, 18(3-4), 199-213. doi:10.1016/s0926-3373(98)00033-2 es_ES
dc.description.references Bazan, A., Nowicki, P., Półrolniczak, P., & Pietrzak, R. (2016). Thermal analysis of activated carbon obtained from residue after supercritical extraction of hops. Journal of Thermal Analysis and Calorimetry, 125(3), 1199-1204. doi:10.1007/s10973-016-5419-5 es_ES
dc.description.references Rodríguez-reinoso, F. (1998). The role of carbon materials in heterogeneous catalysis. Carbon, 36(3), 159-175. doi:10.1016/s0008-6223(97)00173-5 es_ES
dc.description.references Liu, W.-J., Jiang, H., & Yu, H.-Q. (2015). Development of Biochar-Based Functional Materials: Toward a Sustainable Platform Carbon Material. Chemical Reviews, 115(22), 12251-12285. doi:10.1021/acs.chemrev.5b00195 es_ES
dc.description.references Umeyama, T., & Imahori, H. (2012). Photofunctional Hybrid Nanocarbon Materials. The Journal of Physical Chemistry C, 117(7), 3195-3209. doi:10.1021/jp309149s es_ES
dc.description.references Nishihara, H., & Kyotani, T. (2012). Templated Nanocarbons for Energy Storage. Advanced Materials, 24(33), 4473-4498. doi:10.1002/adma.201201715 es_ES
dc.description.references Zhang, L., Xiao, J., Wang, H., & Shao, M. (2017). Carbon-Based Electrocatalysts for Hydrogen and Oxygen Evolution Reactions. ACS Catalysis, 7(11), 7855-7865. doi:10.1021/acscatal.7b02718 es_ES
dc.description.references Borenstein, A., Hanna, O., Attias, R., Luski, S., Brousse, T., & Aurbach, D. (2017). Carbon-based composite materials for supercapacitor electrodes: a review. Journal of Materials Chemistry A, 5(25), 12653-12672. doi:10.1039/c7ta00863e es_ES
dc.description.references Dai, L., Xue, Y., Qu, L., Choi, H.-J., & Baek, J.-B. (2015). Metal-Free Catalysts for Oxygen Reduction Reaction. Chemical Reviews, 115(11), 4823-4892. doi:10.1021/cr5003563 es_ES
dc.description.references Zhang, C., Lv, W., Tao, Y., & Yang, Q.-H. (2015). Towards superior volumetric performance: design and preparation of novel carbon materials for energy storage. Energy & Environmental Science, 8(5), 1390-1403. doi:10.1039/c5ee00389j es_ES
dc.description.references Mian, M. M., & Liu, G. (2018). Recent progress in biochar-supported photocatalysts: synthesis, role of biochar, and applications. RSC Advances, 8(26), 14237-14248. doi:10.1039/c8ra02258e es_ES
dc.description.references Xiong, X., Yu, I. K. M., Cao, L., Tsang, D. C. W., Zhang, S., & Ok, Y. S. (2017). A review of biochar-based catalysts for chemical synthesis, biofuel production, and pollution control. Bioresource Technology, 246, 254-270. doi:10.1016/j.biortech.2017.06.163 es_ES
dc.description.references Liu, J., Jiang, J., Meng, Y., Aihemaiti, A., Xu, Y., Xiang, H., … Chen, X. (2020). Preparation, environmental application and prospect of biochar-supported metal nanoparticles: A review. Journal of Hazardous Materials, 388, 122026. doi:10.1016/j.jhazmat.2020.122026 es_ES
dc.description.references Xia, Y., Yang, Z., & Zhu, Y. (2013). Porous carbon-based materials for hydrogen storage: advancement and challenges. Journal of Materials Chemistry A, 1(33), 9365. doi:10.1039/c3ta10583k es_ES
dc.description.references Back, C.-K., Sandí, G., Prakash, J., & Hranisavljevic, J. (2006). Hydrogen Sorption on Palladium-Doped Sepiolite-Derived Carbon Nanofibers. The Journal of Physical Chemistry B, 110(33), 16225-16231. doi:10.1021/jp061925p es_ES
dc.description.references Bhat, V. V., Contescu, C. I., & Gallego, N. C. (2010). Kinetic effect of Pd additions on the hydrogen uptake of chemically-activated ultramicroporous carbon. Carbon, 48(8), 2361-2364. doi:10.1016/j.carbon.2010.02.025 es_ES
dc.description.references Cheon, Y. E., & Suh, M. P. (2009). Enhanced Hydrogen Storage by Palladium Nanoparticles Fabricated in a Redox-Active Metal-Organic Framework. Angewandte Chemie International Edition, 48(16), 2899-2903. doi:10.1002/anie.200805494 es_ES
dc.description.references Dufour, A., Celzard, A., Fierro, V., Broust, F., Courson, C., Zoulalian, A., & Rouzaud, J. N. (2015). Catalytic conversion of methane over a biomass char for hydrogen production: deactivation and regeneration by steam gasification. Applied Catalysis A: General, 490, 170-180. doi:10.1016/j.apcata.2014.10.038 es_ES
dc.description.references Dufour, A., Valin, S., Castelli, P., Thiery, S., Boissonnet, G., Zoulalian, A., & Glaude, P.-A. (2009). Mechanisms and Kinetics of Methane Thermal Conversion in a Syngas. Industrial & Engineering Chemistry Research, 48(14), 6564-6572. doi:10.1021/ie900343b es_ES
dc.description.references Marshall, J. (2014). Solar energy: Springtime for the artificial leaf. Nature, 510(7503), 22-24. doi:10.1038/510022a es_ES
dc.description.references Lin, Y., Pan, Y., & Zhang, J. (2017). CoP nanorods decorated biomass derived N, P co-doped carbon flakes as an efficient hybrid catalyst for electrochemical hydrogen evolution. Electrochimica Acta, 232, 561-569. doi:10.1016/j.electacta.2017.03.042 es_ES
dc.description.references Liu, X., Zhang, M., Yu, D., Li, T., Wan, M., Zhu, H., … Yao, J. (2016). Functional materials from nature: honeycomb-like carbon nanosheets derived from silk cocoon as excellent electrocatalysts for hydrogen evolution reaction. Electrochimica Acta, 215, 223-230. doi:10.1016/j.electacta.2016.08.091 es_ES
dc.description.references Cui, W., Liu, Q., Xing, Z., Asiri, A. M., Alamry, K. A., & Sun, X. (2015). MoP nanosheets supported on biomass-derived carbon flake: One-step facile preparation and application as a novel high-active electrocatalyst toward hydrogen evolution reaction. Applied Catalysis B: Environmental, 164, 144-150. doi:10.1016/j.apcatb.2014.09.016 es_ES
dc.description.references Lai, F., Miao, Y.-E., Huang, Y., Zhang, Y., & Liu, T. (2015). Nitrogen-Doped Carbon Nanofiber/Molybdenum Disulfide Nanocomposites Derived from Bacterial Cellulose for High-Efficiency Electrocatalytic Hydrogen Evolution Reaction. ACS Applied Materials & Interfaces, 8(6), 3558-3566. doi:10.1021/acsami.5b06274 es_ES
dc.description.references Chen, W.-F., Iyer, S., Iyer, S., Sasaki, K., Wang, C.-H., Zhu, Y., … Fujita, E. (2013). Biomass-derived electrocatalytic composites for hydrogen evolution. Energy & Environmental Science, 6(6), 1818. doi:10.1039/c3ee40596f es_ES
dc.description.references Carmo, M., Fritz, D. L., Mergel, J., & Stolten, D. (2013). A comprehensive review on PEM water electrolysis. International Journal of Hydrogen Energy, 38(12), 4901-4934. doi:10.1016/j.ijhydene.2013.01.151 es_ES
dc.description.references Benck, J. D., Chen, Z., Kuritzky, L. Y., Forman, A. J., & Jaramillo, T. F. (2012). Amorphous Molybdenum Sulfide Catalysts for Electrochemical Hydrogen Production: Insights into the Origin of their Catalytic Activity. ACS Catalysis, 2(9), 1916-1923. doi:10.1021/cs300451q es_ES
dc.description.references Kibsgaard, J., & Jaramillo, T. F. (2014). Molybdenum Phosphosulfide: An Active, Acid-Stable, Earth-Abundant Catalyst for the Hydrogen Evolution Reaction. Angewandte Chemie International Edition, 53(52), 14433-14437. doi:10.1002/anie.201408222 es_ES
dc.description.references Yuan, W., Wang, X., Zhong, X., & Li, C. M. (2016). CoP Nanoparticles in Situ Grown in Three-Dimensional Hierarchical Nanoporous Carbons as Superior Electrocatalysts for Hydrogen Evolution. ACS Applied Materials & Interfaces, 8(32), 20720-20729. doi:10.1021/acsami.6b05304 es_ES
dc.description.references Abghoui, Y., & Skúlason, E. (2017). Hydrogen Evolution Reaction Catalyzed by Transition-Metal Nitrides. The Journal of Physical Chemistry C, 121(43), 24036-24045. doi:10.1021/acs.jpcc.7b06811 es_ES
dc.description.references Humagain, G., MacDougal, K., MacInnis, J., Lowe, J. M., Coridan, R. H., MacQuarrie, S., & Dasog, M. (2018). Highly Efficient, Biochar-Derived Molybdenum Carbide Hydrogen Evolution Electrocatalyst. Advanced Energy Materials, 8(29), 1801461. doi:10.1002/aenm.201801461 es_ES
dc.description.references Vrubel, H., & Hu, X. (2012). Molybdenum Boride and Carbide Catalyze Hydrogen Evolution in both Acidic and Basic Solutions. Angewandte Chemie International Edition, 51(51), 12703-12706. doi:10.1002/anie.201207111 es_ES
dc.description.references Miao, M., Pan, J., He, T., Yan, Y., Xia, B. Y., & Wang, X. (2017). Molybdenum Carbide-Based Electrocatalysts for Hydrogen Evolution Reaction. Chemistry - A European Journal, 23(46), 10947-10961. doi:10.1002/chem.201701064 es_ES
dc.description.references Popczun, E. J., McKone, J. R., Read, C. G., Biacchi, A. J., Wiltrout, A. M., Lewis, N. S., & Schaak, R. E. (2013). Nanostructured Nickel Phosphide as an Electrocatalyst for the Hydrogen Evolution Reaction. Journal of the American Chemical Society, 135(25), 9267-9270. doi:10.1021/ja403440e es_ES
dc.description.references Callejas, J. F., McEnaney, J. M., Read, C. G., Crompton, J. C., Biacchi, A. J., Popczun, E. J., … Schaak, R. E. (2014). Electrocatalytic and Photocatalytic Hydrogen Production from Acidic and Neutral-pH Aqueous Solutions Using Iron Phosphide Nanoparticles. ACS Nano, 8(11), 11101-11107. doi:10.1021/nn5048553 es_ES
dc.description.references Tian, J., Liu, Q., Cheng, N., Asiri, A. M., & Sun, X. (2014). Self-Supported Cu3P Nanowire Arrays as an Integrated High-Performance Three-Dimensional Cathode for Generating Hydrogen from Water. Angewandte Chemie International Edition, 53(36), 9577-9581. doi:10.1002/anie.201403842 es_ES
dc.description.references Li, J.-S., Wang, Y., Liu, C.-H., Li, S.-L., Wang, Y.-G., Dong, L.-Z., … Lan, Y.-Q. (2016). Coupled molybdenum carbide and reduced graphene oxide electrocatalysts for efficient hydrogen evolution. Nature Communications, 7(1). doi:10.1038/ncomms11204 es_ES
dc.description.references An, K., Xu, X., & Liu, X. (2017). Mo2C-Based Electrocatalyst with Biomass-Derived Sulfur and Nitrogen Co-Doped Carbon as a Matrix for Hydrogen Evolution and Organic Pollutant Removal. ACS Sustainable Chemistry & Engineering, 6(1), 1446-1455. doi:10.1021/acssuschemeng.7b03882 es_ES
dc.description.references Zhang, Y., Zuo, L., Zhang, L., Huang, Y., Lu, H., Fan, W., & Liu, T. (2016). Cotton Wool Derived Carbon Fiber Aerogel Supported Few-Layered MoSe2 Nanosheets As Efficient Electrocatalysts for Hydrogen Evolution. ACS Applied Materials & Interfaces, 8(11), 7077-7085. doi:10.1021/acsami.5b12772 es_ES
dc.description.references Zhu, Y. G., Wang, X., Jia, C., Yang, J., & Wang, Q. (2016). Redox-Mediated ORR and OER Reactions: Redox Flow Lithium Oxygen Batteries Enabled with a Pair of Soluble Redox Catalysts. ACS Catalysis, 6(9), 6191-6197. doi:10.1021/acscatal.6b01478 es_ES
dc.description.references Gong, K., Du, F., Xia, Z., Durstock, M., & Dai, L. (2009). Nitrogen-Doped Carbon Nanotube Arrays with High Electrocatalytic Activity for Oxygen Reduction. Science, 323(5915), 760-764. doi:10.1126/science.1168049 es_ES
dc.description.references Shao, M., Chang, Q., Dodelet, J.-P., & Chenitz, R. (2016). Recent Advances in Electrocatalysts for Oxygen Reduction Reaction. Chemical Reviews, 116(6), 3594-3657. doi:10.1021/acs.chemrev.5b00462 es_ES
dc.description.references Zhang, Z., Gao, X., Dou, M., Ji, J., & Wang, F. (2017). Biomass Derived N-Doped Porous Carbon Supported Single Fe Atoms as Superior Electrocatalysts for Oxygen Reduction. Small, 13(22), 1604290. doi:10.1002/smll.201604290 es_ES
dc.description.references Dong, Y., Zheng, L., Deng, Y., Liu, L., Zeng, J., Li, X., & Liao, S. (2018). Enhancement of Oxygen Reduction Performance of Biomass-Derived Carbon through Co-Doping with Early Transition Metal. Journal of The Electrochemical Society, 165(15), J3148-J3156. doi:10.1149/2.0201815jes es_ES
dc.description.references Yang, L., Zeng, X., Wang, D., & Cao, D. (2018). Biomass-derived FeNi alloy and nitrogen-codoped porous carbons as highly efficient oxygen reduction and evolution bifunctional electrocatalysts for rechargeable Zn-air battery. Energy Storage Materials, 12, 277-283. doi:10.1016/j.ensm.2018.02.011 es_ES
dc.description.references Liu, F., Peng, H., Qiao, X., Fu, Z., Huang, P., & Liao, S. (2014). High-performance doped carbon electrocatalyst derived from soybean biomass and promoted by zinc chloride. International Journal of Hydrogen Energy, 39(19), 10128-10134. doi:10.1016/j.ijhydene.2014.04.176 es_ES
dc.description.references Xiong, L., Chen, J.-J., Huang, Y.-X., Li, W.-W., Xie, J.-F., & Yu, H.-Q. (2015). An oxygen reduction catalyst derived from a robust Pd-reducing bacterium. Nano Energy, 12, 33-42. doi:10.1016/j.nanoen.2014.11.065 es_ES
dc.description.references Wang, G., Deng, Y., Yu, J., Zheng, L., Du, L., Song, H., & Liao, S. (2017). From Chlorella to Nestlike Framework Constructed with Doped Carbon Nanotubes: A Biomass-Derived, High-Performance, Bifunctional Oxygen Reduction/Evolution Catalyst. ACS Applied Materials & Interfaces, 9(37), 32168-32178. doi:10.1021/acsami.7b10668 es_ES
dc.description.references Lee, W. J., Li, C., Prajitno, H., Yoo, J., Patel, J., Yang, Y., & Lim, S. (2021). Recent trend in thermal catalytic low temperature CO2 methanation: A critical review. Catalysis Today, 368, 2-19. doi:10.1016/j.cattod.2020.02.017 es_ES
dc.description.references Ma, S., Tan, Y., & Han, Y. (2011). Methanation of syngas over coral reef-like Ni/Al2O3 catalysts. Journal of Natural Gas Chemistry, 20(4), 435-440. doi:10.1016/s1003-9953(10)60192-2 es_ES
dc.description.references Gao, J., Liu, Q., Gu, F., Liu, B., Zhong, Z., & Su, F. (2015). Recent advances in methanation catalysts for the production of synthetic natural gas. RSC Advances, 5(29), 22759-22776. doi:10.1039/c4ra16114a es_ES
dc.description.references Bailera, M., Lisbona, P., Romeo, L. M., & Espatolero, S. (2017). Power to Gas projects review: Lab, pilot and demo plants for storing renewable energy and CO2. Renewable and Sustainable Energy Reviews, 69, 292-312. doi:10.1016/j.rser.2016.11.130 es_ES
dc.description.references Aryal, N., Kvist, T., Ammam, F., Pant, D., & Ottosen, L. D. M. (2018). An overview of microbial biogas enrichment. Bioresource Technology, 264, 359-369. doi:10.1016/j.biortech.2018.06.013 es_ES
dc.description.references Thema, M., Weidlich, T., Hörl, M., Bellack, A., Mörs, F., Hackl, F., … Sterner, M. (2019). Biological CO2-Methanation: An Approach to Standardization. Energies, 12(9), 1670. doi:10.3390/en12091670 es_ES
dc.description.references Thema, M., Bauer, F., & Sterner, M. (2019). Power-to-Gas: Electrolysis and methanation status review. Renewable and Sustainable Energy Reviews, 112, 775-787. doi:10.1016/j.rser.2019.06.030 es_ES
dc.description.references Marques Mota, F., & Kim, D. H. (2019). From CO2methanation to ambitious long-chain hydrocarbons: alternative fuels paving the path to sustainability. Chemical Society Reviews, 48(1), 205-259. doi:10.1039/c8cs00527c es_ES
dc.description.references Variava, M. F., Church, T. L., Noorbehesht, N., Harris, A. T., & Minett, A. I. (2015). Carbon-supported gas-cleaning catalysts enable syn gas methanation at atmospheric pressure. Catalysis Science & Technology, 5(1), 515-524. doi:10.1039/c4cy00696h es_ES
dc.description.references Li, J., Zhou, Y., Xiao, X., Wang, W., Wang, N., Qian, W., & Chu, W. (2018). Regulation of Ni–CNT Interaction on Mn-Promoted Nickel Nanocatalysts Supported on Oxygenated CNTs for CO2 Selective Hydrogenation. ACS Applied Materials & Interfaces, 10(48), 41224-41236. doi:10.1021/acsami.8b04220 es_ES
dc.description.references Swalus, C., Jacquemin, M., Poleunis, C., Bertrand, P., & Ruiz, P. (2012). CO2 methanation on Rh/γ-Al2O3 catalyst at low temperature: «In situ» supply of hydrogen by Ni/activated carbon catalyst. Applied Catalysis B: Environmental, 125, 41-50. doi:10.1016/j.apcatb.2012.05.019 es_ES
dc.description.references Roldán, L., Marco, Y., & García-Bordejé, E. (2016). Origin of the Excellent Performance of Ru on Nitrogen-Doped Carbon Nanofibers for CO2Hydrogenation to CH4. ChemSusChem, 10(6), 1139-1144. doi:10.1002/cssc.201601217 es_ES
dc.description.references Wang, S., Wang, H., Yin, Q., Zhu, L., & Yin, S. (2014). Methanation of bio-syngas over a biochar supported catalyst. New Journal of Chemistry, 38(9), 4471. doi:10.1039/c4nj00780h es_ES
dc.description.references Zhu, L., Yin, S., Yin, Q., Wang, H., & Wang, S. (2015). Biochar: a new promising catalyst support using methanation as a probe reaction. Energy Science & Engineering, 3(2), 126-134. doi:10.1002/ese3.58 es_ES
dc.description.references Wang, X., Liu, Y., Zhu, L., Li, Y., Wang, K., Qiu, K., … Wang, S. (2019). Biomass derived N-doped biochar as efficient catalyst supports for CO2 methanation. Journal of CO2 Utilization, 34, 733-741. doi:10.1016/j.jcou.2019.09.003 es_ES
dc.description.references Wang, W., Duong-Viet, C., Xu, Z., Ba, H., Tuci, G., Giambastiani, G., … Pham-Huu, C. (2020). CO2 methanation under dynamic operational mode using nickel nanoparticles decorated carbon felt (Ni/OCF) combined with inductive heating. Catalysis Today, 357, 214-220. doi:10.1016/j.cattod.2019.02.050 es_ES
dc.description.references Pérez-Mayoral, E., Calvino-Casilda, V., & Soriano, E. (2016). Metal-supported carbon-based materials: opportunities and challenges in the synthesis of valuable products. Catalysis Science & Technology, 6(5), 1265-1291. doi:10.1039/c5cy01437a es_ES
dc.description.references Zhai, Y., Zhu, Z., & Dong, S. (2015). Carbon-Based Nanostructures for Advanced Catalysis. ChemCatChem, 7(18), 2806-2815. doi:10.1002/cctc.201500323 es_ES
dc.description.references Yan, Q., Wan, C., Liu, J., Gao, J., Yu, F., Zhang, J., & Cai, Z. (2013). Iron nanoparticles in situ encapsulated in biochar-based carbon as an effective catalyst for the conversion of biomass-derived syngas to liquid hydrocarbons. Green Chemistry, 15(6), 1631. doi:10.1039/c3gc37107g es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem