- -

Sustainable Carbon as Efficient Support for Metal-Based Nanocatalyst: Applications in Energy Harvesting and Storage

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Sustainable Carbon as Efficient Support for Metal-Based Nanocatalyst: Applications in Energy Harvesting and Storage

Mostrar el registro completo del ítem

Buaki-Sogo, M.; Zubizarreta Saenz De Zaitegui, L.; García Pellicer, M.; Quijano-Lopez, A. (2020). Sustainable Carbon as Efficient Support for Metal-Based Nanocatalyst: Applications in Energy Harvesting and Storage. Molecules. 25(14):1-17. https://doi.org/10.3390/molecules25143123

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/172318

Ficheros en el ítem

Metadatos del ítem

Título: Sustainable Carbon as Efficient Support for Metal-Based Nanocatalyst: Applications in Energy Harvesting and Storage
Autor: Buaki-Sogo, Mireia Zubizarreta Saenz De Zaitegui, Leire GARCÍA PELLICER, MARTA Quijano-Lopez, Alfredo
Entidad UPV: Universitat Politècnica de València. Instituto de Tecnología Eléctrica - Institut de Tecnologia Elèctrica
Universitat Politècnica de València. Departamento de Ingeniería Eléctrica - Departament d'Enginyeria Elèctrica
Fecha difusión:
Resumen:
[EN] Sustainable activated carbon can be obtained from the pyrolysis/activation of biomass wastes coming from different origins. Carbon obtained in this way shows interesting properties, such as high surface area, electrical ...[+]
Palabras clave: Biomass , Biochar , Metal nanocatalyst , Methanation reaction , Sustainable carbon , Energy storage
Derechos de uso: Reconocimiento (by)
Fuente:
Molecules. (eissn: 1420-3049 )
DOI: 10.3390/molecules25143123
Editorial:
MDPI AG
Versión del editor: https://doi.org/10.3390/molecules25143123
Código del Proyecto:
info:eu-repo/grantAgreement/CDTI//CER-20191006/
info:eu-repo/grantAgreement/IVACE//IMDEEA%2F2019%2F44/ES/Gestión sostenible de los recursos: BIOmasa para BIOenergía y BIOproductos de alto valor añadido (BIO3)/
info:eu-repo/grantAgreement/AVI//INNEST00%2F19%2F050/
Agradecimientos:
This research was funded by the Centro de Desarrollo Tecnologico Industrial-CDTI (ALMAGRID Project-CER-20191006), by the Instituto Valenciano de Competitividad Empresarial-IVACE-FEDER (BIO3 Project-IMDEEA/2019/44) and by ...[+]
Tipo: Artículo

References

Updated Bioeconomy Strategyhttps://ec.europa.eu/knowledge4policy/node/34337_es

Sharma, H. K., Xu, C., & Qin, W. (2017). Biological Pretreatment of Lignocellulosic Biomass for Biofuels and Bioproducts: An Overview. Waste and Biomass Valorization, 10(2), 235-251. doi:10.1007/s12649-017-0059-y

González-García, S., Gullón, B., Rivas, S., Feijoo, G., & Moreira, M. T. (2016). Environmental performance of biomass refining into high-added value compounds. Journal of Cleaner Production, 120, 170-180. doi:10.1016/j.jclepro.2016.02.015 [+]
Updated Bioeconomy Strategyhttps://ec.europa.eu/knowledge4policy/node/34337_es

Sharma, H. K., Xu, C., & Qin, W. (2017). Biological Pretreatment of Lignocellulosic Biomass for Biofuels and Bioproducts: An Overview. Waste and Biomass Valorization, 10(2), 235-251. doi:10.1007/s12649-017-0059-y

González-García, S., Gullón, B., Rivas, S., Feijoo, G., & Moreira, M. T. (2016). Environmental performance of biomass refining into high-added value compounds. Journal of Cleaner Production, 120, 170-180. doi:10.1016/j.jclepro.2016.02.015

Liu, W.-J., Jiang, H., & Yu, H.-Q. (2019). Emerging applications of biochar-based materials for energy storage and conversion. Energy & Environmental Science, 12(6), 1751-1779. doi:10.1039/c9ee00206e

Maneerung, T., Liew, J., Dai, Y., Kawi, S., Chong, C., & Wang, C.-H. (2016). Activated carbon derived from carbon residue from biomass gasification and its application for dye adsorption: Kinetics, isotherms and thermodynamic studies. Bioresource Technology, 200, 350-359. doi:10.1016/j.biortech.2015.10.047

Hu, B., Wang, K., Wu, L., Yu, S.-H., Antonietti, M., & Titirici, M.-M. (2010). Engineering Carbon Materials from the Hydrothermal Carbonization Process of Biomass. Advanced Materials, 22(7), 813-828. doi:10.1002/adma.200902812

Xiu, S., Shahbazi, A., & Li, R. (2017). Characterization, Modification and Application of Biochar for Energy Storage and Catalysis: A Review. Trends in Renewable Energy, 3(1), 86-101. doi:10.17737/tre.2017.3.1.0033

Khezami, L., Chetouani, A., Taouk, B., & Capart, R. (2005). Production and characterisation of activated carbon from wood components in powder: Cellulose, lignin, xylan. Powder Technology, 157(1-3), 48-56. doi:10.1016/j.powtec.2005.05.009

Contescu, C., Adhikari, S., Gallego, N., Evans, N., & Biss, B. (2018). Activated Carbons Derived from High-Temperature Pyrolysis of Lignocellulosic Biomass. C, 4(3), 51. doi:10.3390/c4030051

IOANNIDOU, O., & ZABANIOTOU, A. (2007). Agricultural residues as precursors for activated carbon production—A review. Renewable and Sustainable Energy Reviews, 11(9), 1966-2005. doi:10.1016/j.rser.2006.03.013

Namaalwa, J., Sankhayan, P. L., & Hofstad, O. (2007). A dynamic bio-economic model for analyzing deforestation and degradation: An application to woodlands in Uganda. Forest Policy and Economics, 9(5), 479-495. doi:10.1016/j.forpol.2006.01.001

Tomczyk, A., Sokołowska, Z., & Boguta, P. (2020). Biochar physicochemical properties: pyrolysis temperature and feedstock kind effects. Reviews in Environmental Science and Bio/Technology, 19(1), 191-215. doi:10.1007/s11157-020-09523-3

Lee, J., Kim, K.-H., & Kwon, E. E. (2017). Biochar as a Catalyst. Renewable and Sustainable Energy Reviews, 77, 70-79. doi:10.1016/j.rser.2017.04.002

Prati, L., Bergna, D., Villa, A., Spontoni, P., Bianchi, C. L., Hu, T., … Lassi, U. (2018). Carbons from second generation biomass as sustainable supports for catalytic systems. Catalysis Today, 301, 239-243. doi:10.1016/j.cattod.2017.03.007

Shen, Y., Zhao, P., & Shao, Q. (2014). Porous silica and carbon derived materials from rice husk pyrolysis char. Microporous and Mesoporous Materials, 188, 46-76. doi:10.1016/j.micromeso.2014.01.005

Azargohar, R., & Dalai, A. K. (2008). Steam and KOH activation of biochar: Experimental and modeling studies. Microporous and Mesoporous Materials, 110(2-3), 413-421. doi:10.1016/j.micromeso.2007.06.047

Weber, K., & Quicker, P. (2018). Properties of biochar. Fuel, 217, 240-261. doi:10.1016/j.fuel.2017.12.054

Lam, E., & Luong, J. H. T. (2014). Carbon Materials as Catalyst Supports and Catalysts in the Transformation of Biomass to Fuels and Chemicals. ACS Catalysis, 4(10), 3393-3410. doi:10.1021/cs5008393

Thommes, M., Kaneko, K., Neimark, A. V., Olivier, J. P., Rodriguez-Reinoso, F., Rouquerol, J., & Sing, K. S. W. (2015). Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report). Pure and Applied Chemistry, 87(9-10), 1051-1069. doi:10.1515/pac-2014-1117

Jagiello, J., Kenvin, J., Celzard, A., & Fierro, V. (2019). Enhanced resolution of ultra micropore size determination of biochars and activated carbons by dual gas analysis using N2 and CO2 with 2D-NLDFT adsorption models. Carbon, 144, 206-215. doi:10.1016/j.carbon.2018.12.028

Jagiello, J., Kenvin, J., Ania, C. O., Parra, J. B., Celzard, A., & Fierro, V. (2020). Exploiting the adsorption of simple gases O2 and H2 with minimal quadrupole moments for the dual gas characterization of nanoporous carbons using 2D-NLDFT models. Carbon, 160, 164-175. doi:10.1016/j.carbon.2020.01.013

Buaki-Sogo, M., Garcia, H., & Aprile, C. (2015). Imidazolium-based silica microreactors for the efficient conversion of carbon dioxide. Catalysis Science & Technology, 5(2), 1222-1230. doi:10.1039/c4cy01258e

Buaki-Sogó, M., Vivian, A., Bivona, L. A., García, H., Gruttadauria, M., & Aprile, C. (2016). Imidazolium functionalized carbon nanotubes for the synthesis of cyclic carbonates: reducing the gap between homogeneous and heterogeneous catalysis. Catalysis Science & Technology, 6(24), 8418-8427. doi:10.1039/c6cy01068g

Somerville, M., & Jahanshahi, S. (2015). The effect of temperature and compression during pyrolysis on the density of charcoal made from Australian eucalypt wood. Renewable Energy, 80, 471-478. doi:10.1016/j.renene.2015.02.013

Brewer, C. E., Chuang, V. J., Masiello, C. A., Gonnermann, H., Gao, X., Dugan, B., … Davies, C. A. (2014). New approaches to measuring biochar density and porosity. Biomass and Bioenergy, 66, 176-185. doi:10.1016/j.biombioe.2014.03.059

Anovitz, L. M., & Cole, D. R. (2015). Characterization and Analysis of Porosity and Pore Structures. Reviews in Mineralogy and Geochemistry, 80(1), 61-164. doi:10.2138/rmg.2015.80.04

Wang, R., Sang, S., Zhu, D., Liu, S., & Yu, K. (2017). Pore characteristics and controlling factors of the Lower Cambrian Hetang Formation shale in Northeast Jiangxi, China. Energy Exploration & Exploitation, 36(1), 43-65. doi:10.1177/0144598717723814

Pasel, J., Käßner, P., Montanari, B., Gazzano, M., Vaccari, A., Makowski, W., … Papp, H. (1998). Transition metal oxides supported on active carbons as low temperature catalysts for the selective catalytic reduction (SCR) of NO with NH3. Applied Catalysis B: Environmental, 18(3-4), 199-213. doi:10.1016/s0926-3373(98)00033-2

Bazan, A., Nowicki, P., Półrolniczak, P., & Pietrzak, R. (2016). Thermal analysis of activated carbon obtained from residue after supercritical extraction of hops. Journal of Thermal Analysis and Calorimetry, 125(3), 1199-1204. doi:10.1007/s10973-016-5419-5

Rodríguez-reinoso, F. (1998). The role of carbon materials in heterogeneous catalysis. Carbon, 36(3), 159-175. doi:10.1016/s0008-6223(97)00173-5

Liu, W.-J., Jiang, H., & Yu, H.-Q. (2015). Development of Biochar-Based Functional Materials: Toward a Sustainable Platform Carbon Material. Chemical Reviews, 115(22), 12251-12285. doi:10.1021/acs.chemrev.5b00195

Umeyama, T., & Imahori, H. (2012). Photofunctional Hybrid Nanocarbon Materials. The Journal of Physical Chemistry C, 117(7), 3195-3209. doi:10.1021/jp309149s

Nishihara, H., & Kyotani, T. (2012). Templated Nanocarbons for Energy Storage. Advanced Materials, 24(33), 4473-4498. doi:10.1002/adma.201201715

Zhang, L., Xiao, J., Wang, H., & Shao, M. (2017). Carbon-Based Electrocatalysts for Hydrogen and Oxygen Evolution Reactions. ACS Catalysis, 7(11), 7855-7865. doi:10.1021/acscatal.7b02718

Borenstein, A., Hanna, O., Attias, R., Luski, S., Brousse, T., & Aurbach, D. (2017). Carbon-based composite materials for supercapacitor electrodes: a review. Journal of Materials Chemistry A, 5(25), 12653-12672. doi:10.1039/c7ta00863e

Dai, L., Xue, Y., Qu, L., Choi, H.-J., & Baek, J.-B. (2015). Metal-Free Catalysts for Oxygen Reduction Reaction. Chemical Reviews, 115(11), 4823-4892. doi:10.1021/cr5003563

Zhang, C., Lv, W., Tao, Y., & Yang, Q.-H. (2015). Towards superior volumetric performance: design and preparation of novel carbon materials for energy storage. Energy & Environmental Science, 8(5), 1390-1403. doi:10.1039/c5ee00389j

Mian, M. M., & Liu, G. (2018). Recent progress in biochar-supported photocatalysts: synthesis, role of biochar, and applications. RSC Advances, 8(26), 14237-14248. doi:10.1039/c8ra02258e

Xiong, X., Yu, I. K. M., Cao, L., Tsang, D. C. W., Zhang, S., & Ok, Y. S. (2017). A review of biochar-based catalysts for chemical synthesis, biofuel production, and pollution control. Bioresource Technology, 246, 254-270. doi:10.1016/j.biortech.2017.06.163

Liu, J., Jiang, J., Meng, Y., Aihemaiti, A., Xu, Y., Xiang, H., … Chen, X. (2020). Preparation, environmental application and prospect of biochar-supported metal nanoparticles: A review. Journal of Hazardous Materials, 388, 122026. doi:10.1016/j.jhazmat.2020.122026

Xia, Y., Yang, Z., & Zhu, Y. (2013). Porous carbon-based materials for hydrogen storage: advancement and challenges. Journal of Materials Chemistry A, 1(33), 9365. doi:10.1039/c3ta10583k

Back, C.-K., Sandí, G., Prakash, J., & Hranisavljevic, J. (2006). Hydrogen Sorption on Palladium-Doped Sepiolite-Derived Carbon Nanofibers. The Journal of Physical Chemistry B, 110(33), 16225-16231. doi:10.1021/jp061925p

Bhat, V. V., Contescu, C. I., & Gallego, N. C. (2010). Kinetic effect of Pd additions on the hydrogen uptake of chemically-activated ultramicroporous carbon. Carbon, 48(8), 2361-2364. doi:10.1016/j.carbon.2010.02.025

Cheon, Y. E., & Suh, M. P. (2009). Enhanced Hydrogen Storage by Palladium Nanoparticles Fabricated in a Redox-Active Metal-Organic Framework. Angewandte Chemie International Edition, 48(16), 2899-2903. doi:10.1002/anie.200805494

Dufour, A., Celzard, A., Fierro, V., Broust, F., Courson, C., Zoulalian, A., & Rouzaud, J. N. (2015). Catalytic conversion of methane over a biomass char for hydrogen production: deactivation and regeneration by steam gasification. Applied Catalysis A: General, 490, 170-180. doi:10.1016/j.apcata.2014.10.038

Dufour, A., Valin, S., Castelli, P., Thiery, S., Boissonnet, G., Zoulalian, A., & Glaude, P.-A. (2009). Mechanisms and Kinetics of Methane Thermal Conversion in a Syngas. Industrial & Engineering Chemistry Research, 48(14), 6564-6572. doi:10.1021/ie900343b

Marshall, J. (2014). Solar energy: Springtime for the artificial leaf. Nature, 510(7503), 22-24. doi:10.1038/510022a

Lin, Y., Pan, Y., & Zhang, J. (2017). CoP nanorods decorated biomass derived N, P co-doped carbon flakes as an efficient hybrid catalyst for electrochemical hydrogen evolution. Electrochimica Acta, 232, 561-569. doi:10.1016/j.electacta.2017.03.042

Liu, X., Zhang, M., Yu, D., Li, T., Wan, M., Zhu, H., … Yao, J. (2016). Functional materials from nature: honeycomb-like carbon nanosheets derived from silk cocoon as excellent electrocatalysts for hydrogen evolution reaction. Electrochimica Acta, 215, 223-230. doi:10.1016/j.electacta.2016.08.091

Cui, W., Liu, Q., Xing, Z., Asiri, A. M., Alamry, K. A., & Sun, X. (2015). MoP nanosheets supported on biomass-derived carbon flake: One-step facile preparation and application as a novel high-active electrocatalyst toward hydrogen evolution reaction. Applied Catalysis B: Environmental, 164, 144-150. doi:10.1016/j.apcatb.2014.09.016

Lai, F., Miao, Y.-E., Huang, Y., Zhang, Y., & Liu, T. (2015). Nitrogen-Doped Carbon Nanofiber/Molybdenum Disulfide Nanocomposites Derived from Bacterial Cellulose for High-Efficiency Electrocatalytic Hydrogen Evolution Reaction. ACS Applied Materials & Interfaces, 8(6), 3558-3566. doi:10.1021/acsami.5b06274

Chen, W.-F., Iyer, S., Iyer, S., Sasaki, K., Wang, C.-H., Zhu, Y., … Fujita, E. (2013). Biomass-derived electrocatalytic composites for hydrogen evolution. Energy & Environmental Science, 6(6), 1818. doi:10.1039/c3ee40596f

Carmo, M., Fritz, D. L., Mergel, J., & Stolten, D. (2013). A comprehensive review on PEM water electrolysis. International Journal of Hydrogen Energy, 38(12), 4901-4934. doi:10.1016/j.ijhydene.2013.01.151

Benck, J. D., Chen, Z., Kuritzky, L. Y., Forman, A. J., & Jaramillo, T. F. (2012). Amorphous Molybdenum Sulfide Catalysts for Electrochemical Hydrogen Production: Insights into the Origin of their Catalytic Activity. ACS Catalysis, 2(9), 1916-1923. doi:10.1021/cs300451q

Kibsgaard, J., & Jaramillo, T. F. (2014). Molybdenum Phosphosulfide: An Active, Acid-Stable, Earth-Abundant Catalyst for the Hydrogen Evolution Reaction. Angewandte Chemie International Edition, 53(52), 14433-14437. doi:10.1002/anie.201408222

Yuan, W., Wang, X., Zhong, X., & Li, C. M. (2016). CoP Nanoparticles in Situ Grown in Three-Dimensional Hierarchical Nanoporous Carbons as Superior Electrocatalysts for Hydrogen Evolution. ACS Applied Materials & Interfaces, 8(32), 20720-20729. doi:10.1021/acsami.6b05304

Abghoui, Y., & Skúlason, E. (2017). Hydrogen Evolution Reaction Catalyzed by Transition-Metal Nitrides. The Journal of Physical Chemistry C, 121(43), 24036-24045. doi:10.1021/acs.jpcc.7b06811

Humagain, G., MacDougal, K., MacInnis, J., Lowe, J. M., Coridan, R. H., MacQuarrie, S., & Dasog, M. (2018). Highly Efficient, Biochar-Derived Molybdenum Carbide Hydrogen Evolution Electrocatalyst. Advanced Energy Materials, 8(29), 1801461. doi:10.1002/aenm.201801461

Vrubel, H., & Hu, X. (2012). Molybdenum Boride and Carbide Catalyze Hydrogen Evolution in both Acidic and Basic Solutions. Angewandte Chemie International Edition, 51(51), 12703-12706. doi:10.1002/anie.201207111

Miao, M., Pan, J., He, T., Yan, Y., Xia, B. Y., & Wang, X. (2017). Molybdenum Carbide-Based Electrocatalysts for Hydrogen Evolution Reaction. Chemistry - A European Journal, 23(46), 10947-10961. doi:10.1002/chem.201701064

Popczun, E. J., McKone, J. R., Read, C. G., Biacchi, A. J., Wiltrout, A. M., Lewis, N. S., & Schaak, R. E. (2013). Nanostructured Nickel Phosphide as an Electrocatalyst for the Hydrogen Evolution Reaction. Journal of the American Chemical Society, 135(25), 9267-9270. doi:10.1021/ja403440e

Callejas, J. F., McEnaney, J. M., Read, C. G., Crompton, J. C., Biacchi, A. J., Popczun, E. J., … Schaak, R. E. (2014). Electrocatalytic and Photocatalytic Hydrogen Production from Acidic and Neutral-pH Aqueous Solutions Using Iron Phosphide Nanoparticles. ACS Nano, 8(11), 11101-11107. doi:10.1021/nn5048553

Tian, J., Liu, Q., Cheng, N., Asiri, A. M., & Sun, X. (2014). Self-Supported Cu3P Nanowire Arrays as an Integrated High-Performance Three-Dimensional Cathode for Generating Hydrogen from Water. Angewandte Chemie International Edition, 53(36), 9577-9581. doi:10.1002/anie.201403842

Li, J.-S., Wang, Y., Liu, C.-H., Li, S.-L., Wang, Y.-G., Dong, L.-Z., … Lan, Y.-Q. (2016). Coupled molybdenum carbide and reduced graphene oxide electrocatalysts for efficient hydrogen evolution. Nature Communications, 7(1). doi:10.1038/ncomms11204

An, K., Xu, X., & Liu, X. (2017). Mo2C-Based Electrocatalyst with Biomass-Derived Sulfur and Nitrogen Co-Doped Carbon as a Matrix for Hydrogen Evolution and Organic Pollutant Removal. ACS Sustainable Chemistry & Engineering, 6(1), 1446-1455. doi:10.1021/acssuschemeng.7b03882

Zhang, Y., Zuo, L., Zhang, L., Huang, Y., Lu, H., Fan, W., & Liu, T. (2016). Cotton Wool Derived Carbon Fiber Aerogel Supported Few-Layered MoSe2 Nanosheets As Efficient Electrocatalysts for Hydrogen Evolution. ACS Applied Materials & Interfaces, 8(11), 7077-7085. doi:10.1021/acsami.5b12772

Zhu, Y. G., Wang, X., Jia, C., Yang, J., & Wang, Q. (2016). Redox-Mediated ORR and OER Reactions: Redox Flow Lithium Oxygen Batteries Enabled with a Pair of Soluble Redox Catalysts. ACS Catalysis, 6(9), 6191-6197. doi:10.1021/acscatal.6b01478

Gong, K., Du, F., Xia, Z., Durstock, M., & Dai, L. (2009). Nitrogen-Doped Carbon Nanotube Arrays with High Electrocatalytic Activity for Oxygen Reduction. Science, 323(5915), 760-764. doi:10.1126/science.1168049

Shao, M., Chang, Q., Dodelet, J.-P., & Chenitz, R. (2016). Recent Advances in Electrocatalysts for Oxygen Reduction Reaction. Chemical Reviews, 116(6), 3594-3657. doi:10.1021/acs.chemrev.5b00462

Zhang, Z., Gao, X., Dou, M., Ji, J., & Wang, F. (2017). Biomass Derived N-Doped Porous Carbon Supported Single Fe Atoms as Superior Electrocatalysts for Oxygen Reduction. Small, 13(22), 1604290. doi:10.1002/smll.201604290

Dong, Y., Zheng, L., Deng, Y., Liu, L., Zeng, J., Li, X., & Liao, S. (2018). Enhancement of Oxygen Reduction Performance of Biomass-Derived Carbon through Co-Doping with Early Transition Metal. Journal of The Electrochemical Society, 165(15), J3148-J3156. doi:10.1149/2.0201815jes

Yang, L., Zeng, X., Wang, D., & Cao, D. (2018). Biomass-derived FeNi alloy and nitrogen-codoped porous carbons as highly efficient oxygen reduction and evolution bifunctional electrocatalysts for rechargeable Zn-air battery. Energy Storage Materials, 12, 277-283. doi:10.1016/j.ensm.2018.02.011

Liu, F., Peng, H., Qiao, X., Fu, Z., Huang, P., & Liao, S. (2014). High-performance doped carbon electrocatalyst derived from soybean biomass and promoted by zinc chloride. International Journal of Hydrogen Energy, 39(19), 10128-10134. doi:10.1016/j.ijhydene.2014.04.176

Xiong, L., Chen, J.-J., Huang, Y.-X., Li, W.-W., Xie, J.-F., & Yu, H.-Q. (2015). An oxygen reduction catalyst derived from a robust Pd-reducing bacterium. Nano Energy, 12, 33-42. doi:10.1016/j.nanoen.2014.11.065

Wang, G., Deng, Y., Yu, J., Zheng, L., Du, L., Song, H., & Liao, S. (2017). From Chlorella to Nestlike Framework Constructed with Doped Carbon Nanotubes: A Biomass-Derived, High-Performance, Bifunctional Oxygen Reduction/Evolution Catalyst. ACS Applied Materials & Interfaces, 9(37), 32168-32178. doi:10.1021/acsami.7b10668

Lee, W. J., Li, C., Prajitno, H., Yoo, J., Patel, J., Yang, Y., & Lim, S. (2021). Recent trend in thermal catalytic low temperature CO2 methanation: A critical review. Catalysis Today, 368, 2-19. doi:10.1016/j.cattod.2020.02.017

Ma, S., Tan, Y., & Han, Y. (2011). Methanation of syngas over coral reef-like Ni/Al2O3 catalysts. Journal of Natural Gas Chemistry, 20(4), 435-440. doi:10.1016/s1003-9953(10)60192-2

Gao, J., Liu, Q., Gu, F., Liu, B., Zhong, Z., & Su, F. (2015). Recent advances in methanation catalysts for the production of synthetic natural gas. RSC Advances, 5(29), 22759-22776. doi:10.1039/c4ra16114a

Bailera, M., Lisbona, P., Romeo, L. M., & Espatolero, S. (2017). Power to Gas projects review: Lab, pilot and demo plants for storing renewable energy and CO2. Renewable and Sustainable Energy Reviews, 69, 292-312. doi:10.1016/j.rser.2016.11.130

Aryal, N., Kvist, T., Ammam, F., Pant, D., & Ottosen, L. D. M. (2018). An overview of microbial biogas enrichment. Bioresource Technology, 264, 359-369. doi:10.1016/j.biortech.2018.06.013

Thema, M., Weidlich, T., Hörl, M., Bellack, A., Mörs, F., Hackl, F., … Sterner, M. (2019). Biological CO2-Methanation: An Approach to Standardization. Energies, 12(9), 1670. doi:10.3390/en12091670

Thema, M., Bauer, F., & Sterner, M. (2019). Power-to-Gas: Electrolysis and methanation status review. Renewable and Sustainable Energy Reviews, 112, 775-787. doi:10.1016/j.rser.2019.06.030

Marques Mota, F., & Kim, D. H. (2019). From CO2methanation to ambitious long-chain hydrocarbons: alternative fuels paving the path to sustainability. Chemical Society Reviews, 48(1), 205-259. doi:10.1039/c8cs00527c

Variava, M. F., Church, T. L., Noorbehesht, N., Harris, A. T., & Minett, A. I. (2015). Carbon-supported gas-cleaning catalysts enable syn gas methanation at atmospheric pressure. Catalysis Science & Technology, 5(1), 515-524. doi:10.1039/c4cy00696h

Li, J., Zhou, Y., Xiao, X., Wang, W., Wang, N., Qian, W., & Chu, W. (2018). Regulation of Ni–CNT Interaction on Mn-Promoted Nickel Nanocatalysts Supported on Oxygenated CNTs for CO2 Selective Hydrogenation. ACS Applied Materials & Interfaces, 10(48), 41224-41236. doi:10.1021/acsami.8b04220

Swalus, C., Jacquemin, M., Poleunis, C., Bertrand, P., & Ruiz, P. (2012). CO2 methanation on Rh/γ-Al2O3 catalyst at low temperature: «In situ» supply of hydrogen by Ni/activated carbon catalyst. Applied Catalysis B: Environmental, 125, 41-50. doi:10.1016/j.apcatb.2012.05.019

Roldán, L., Marco, Y., & García-Bordejé, E. (2016). Origin of the Excellent Performance of Ru on Nitrogen-Doped Carbon Nanofibers for CO2Hydrogenation to CH4. ChemSusChem, 10(6), 1139-1144. doi:10.1002/cssc.201601217

Wang, S., Wang, H., Yin, Q., Zhu, L., & Yin, S. (2014). Methanation of bio-syngas over a biochar supported catalyst. New Journal of Chemistry, 38(9), 4471. doi:10.1039/c4nj00780h

Zhu, L., Yin, S., Yin, Q., Wang, H., & Wang, S. (2015). Biochar: a new promising catalyst support using methanation as a probe reaction. Energy Science & Engineering, 3(2), 126-134. doi:10.1002/ese3.58

Wang, X., Liu, Y., Zhu, L., Li, Y., Wang, K., Qiu, K., … Wang, S. (2019). Biomass derived N-doped biochar as efficient catalyst supports for CO2 methanation. Journal of CO2 Utilization, 34, 733-741. doi:10.1016/j.jcou.2019.09.003

Wang, W., Duong-Viet, C., Xu, Z., Ba, H., Tuci, G., Giambastiani, G., … Pham-Huu, C. (2020). CO2 methanation under dynamic operational mode using nickel nanoparticles decorated carbon felt (Ni/OCF) combined with inductive heating. Catalysis Today, 357, 214-220. doi:10.1016/j.cattod.2019.02.050

Pérez-Mayoral, E., Calvino-Casilda, V., & Soriano, E. (2016). Metal-supported carbon-based materials: opportunities and challenges in the synthesis of valuable products. Catalysis Science & Technology, 6(5), 1265-1291. doi:10.1039/c5cy01437a

Zhai, Y., Zhu, Z., & Dong, S. (2015). Carbon-Based Nanostructures for Advanced Catalysis. ChemCatChem, 7(18), 2806-2815. doi:10.1002/cctc.201500323

Yan, Q., Wan, C., Liu, J., Gao, J., Yu, F., Zhang, J., & Cai, Z. (2013). Iron nanoparticles in situ encapsulated in biochar-based carbon as an effective catalyst for the conversion of biomass-derived syngas to liquid hydrocarbons. Green Chemistry, 15(6), 1631. doi:10.1039/c3gc37107g

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem