Mostrar el registro sencillo del ítem
dc.contributor.author | Frerick, Leonhard | es_ES |
dc.contributor.author | Jorda Mora, Enrique | es_ES |
dc.contributor.author | Wengenroth, Jochen | es_ES |
dc.date.accessioned | 2021-09-14T03:33:54Z | |
dc.date.available | 2021-09-14T03:33:54Z | |
dc.date.issued | 2020-08 | es_ES |
dc.identifier.issn | 0025-5874 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/172322 | |
dc.description.abstract | [EN] We introduce sufficient as well as necessary conditions for a compact set K such that there is a continuous linear extension operator from the space of restrictions C-infinity (K) = {F vertical bar(K) : F is an element of C-infinity (R)} to C-infinity (R). This allows us to deal with examples of the form K = {a(n) : n is an element of N} boolean OR{0} for a(n) -> 0 previously considered by Fefferman and Ricci as well as Vogt. | es_ES |
dc.description.sponsorship | The research of all authors was partially supported by GVA AICO/2016/054 . The research of the second author was partially supported by the project MTM2016-76647-P. | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | Springer-Verlag | es_ES |
dc.relation.ispartof | Mathematische Zeitschrift | es_ES |
dc.rights | Reserva de todos los derechos | es_ES |
dc.subject | Extension operator | es_ES |
dc.subject | Spaces of smooth functions | es_ES |
dc.subject.classification | MATEMATICA APLICADA | es_ES |
dc.title | Extension operators for smooth functions on compact subsets of the reals | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1007/s00209-019-02388-5 | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/GVA//AICO%2F2016%2F054/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MINECO//MTM2016-76647-P/ES/ANALISIS FUNCIONAL, TEORIA DE OPERADORES Y ANALISIS TIEMPO-FRECUENCIA/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Matemática Aplicada - Departament de Matemàtica Aplicada | es_ES |
dc.description.bibliographicCitation | Frerick, L.; Jorda Mora, E.; Wengenroth, J. (2020). Extension operators for smooth functions on compact subsets of the reals. Mathematische Zeitschrift. 295(3-4):1537-1552. https://doi.org/10.1007/s00209-019-02388-5 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.1007/s00209-019-02388-5 | es_ES |
dc.description.upvformatpinicio | 1537 | es_ES |
dc.description.upvformatpfin | 1552 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 295 | es_ES |
dc.description.issue | 3-4 | es_ES |
dc.relation.pasarela | S\420210 | es_ES |
dc.contributor.funder | Generalitat Valenciana | es_ES |
dc.contributor.funder | AGENCIA ESTATAL DE INVESTIGACION | es_ES |
dc.description.references | Bos, Len P., Milman, Pierre D.: Sobolev–Gagliardo–Nirenberg and Markov type inequalities on subanalytic domains. Geom. Funct. Anal. 5(6), 853–923 (1995) | es_ES |
dc.description.references | Bierstone, Edward, Milman, Pierre D.: Geometric and differential properties of subanalytic sets. Ann. Math. (2) 147(3), 731–785 (1998) | es_ES |
dc.description.references | Bierstone, Edward, Milman, Pierre D., Pawłucki, Wiesław: Composite differentiable functions. Duke Math. J. 83(3), 607–620 (1996) | es_ES |
dc.description.references | DeVore, Ronald A., Lorentz, George G.: Constructive approximation, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 303. Springer, Berlin (1993) | es_ES |
dc.description.references | Fefferman, Charles: $$C^m$$ extension by linear operators. Ann. Math. (2) 166(3), 779–835 (2007) | es_ES |
dc.description.references | Frerick, Leonhard, Jordá, Enrique, Wengenroth, Jochen: Tame linear extension operators for smooth Whitney functions. J. Funct. Anal. 261(3), 591–603 (2011) | es_ES |
dc.description.references | Frerick, Leonhard, Jordá, Enrique, Wengenroth, Jochen: Whitney extension operators without loss of derivatives. Rev. Mat. Iberoam. 32(2), 377–390 (2016) | es_ES |
dc.description.references | Fefferman, Charles, Ricci, Fulvio: Some examples of $$C^\infty $$ extension by linear operators. Rev. Mat. Iberoam. 28(1), 297–304 (2012) | es_ES |
dc.description.references | Frerick, Leonhard: Extension operators for spaces of infinite differentiable Whitney jets. J. Reine Angew. Math. 602, 123–154 (2007) | es_ES |
dc.description.references | Goncharov, Alexander: A compact set without Markov’s property but with an extension operator for $$C^\infty $$-functions. Studia Math. 119(1), 27–35 (1996) | es_ES |
dc.description.references | Hörmander, Lars: The analysis of linear partial differential operators. I, second ed., Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 256, Springer, Berlin, Distribution theory and Fourier analysis (1990) | es_ES |
dc.description.references | Malgrange, Bernard: Ideals of differentiable functions, Tata Institute of Fundamental Research Studies in Mathematics, No. 3, Tata Institute of Fundamental Research, Bombay; Oxford University Press, London, (1967) | es_ES |
dc.description.references | Merrien, Jean: Prolongateurs de fonctions différentiables d’une variable réelle. J. Math. Pures Appl. (9) 45, 291–309 (1966) | es_ES |
dc.description.references | Mitjagin, B.S.: Approximate dimension and bases in nuclear spaces. Uspehi Mat. Nauk 16(4 (100)), 63–132 (1961) | es_ES |
dc.description.references | Meise, Reinhold, Vogt, Dietmar: Introduction to functional analysis, Oxford Graduate Texts in Mathematics, vol. 2. The Clarendon Press, Oxford University Press, New York (1997). Translated from the German by M. S. Ramanujan and revised by the authors | es_ES |
dc.description.references | Pawłucki, Wiesław: On the algebra of functions $$\mathscr {C}^k$$-extendable for each $$k$$ finite. Proc. Am. Math. Soc. 133(2), 481–484 (2005). (Electronic) | es_ES |
dc.description.references | Pawłucki, Wiesław, Pleśniak, Wiesław: Extension of $$C^\infty $$ functions from sets with polynomial cusps. Studia Math. 88(3), 279–287 (1988) | es_ES |
dc.description.references | Stein, Elias M.: Singular integrals and differentiability properties of functions, Princeton Mathematical Series, vol. 30. Princeton University Press, Princeton (1970) | es_ES |
dc.description.references | Tidten, Michael: Fortsetzungen von $$C^{\infty }$$-Funktionen, welche auf einer abgeschlossenen Menge in $${ R}^{n}$$ definiert sind. Manuscripta Math. 27(3), 291–312 (1979) | es_ES |
dc.description.references | Vogt, Dietmar: Restriction spaces of $$A^\infty $$. Rev. Mat. Iberoam. 30(1), 65–78 (2014) | es_ES |
dc.description.references | Vogt, Dietmar, Wagner, Max Josef: Charakterisierung der Quotientenräume von $$s$$ und eine Vermutung von Martineau. Studia Math. 67(3), 225–240 (1980) | es_ES |
dc.description.references | Wengenroth, Jochen: Derived functors in functional analysis. Lecture Notes in Mathematics, vol. 1810. Springer, Berlin (2003) | es_ES |
dc.description.references | Whitney, Hassler: Analytic extensions of differentiable functions defined in closed sets. Trans. Am. Math. Soc. 36(1), 63–89 (1934) | es_ES |
dc.description.references | Whitney, Hassler: On ideals of differentiable functions. Am. J. Math. 70, 635–658 (1948) | es_ES |