- -

Extension operators for smooth functions on compact subsets of the reals

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Extension operators for smooth functions on compact subsets of the reals

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Frerick, Leonhard es_ES
dc.contributor.author Jorda Mora, Enrique es_ES
dc.contributor.author Wengenroth, Jochen es_ES
dc.date.accessioned 2021-09-14T03:33:54Z
dc.date.available 2021-09-14T03:33:54Z
dc.date.issued 2020-08 es_ES
dc.identifier.issn 0025-5874 es_ES
dc.identifier.uri http://hdl.handle.net/10251/172322
dc.description.abstract [EN] We introduce sufficient as well as necessary conditions for a compact set K such that there is a continuous linear extension operator from the space of restrictions C-infinity (K) = {F vertical bar(K) : F is an element of C-infinity (R)} to C-infinity (R). This allows us to deal with examples of the form K = {a(n) : n is an element of N} boolean OR{0} for a(n) -> 0 previously considered by Fefferman and Ricci as well as Vogt. es_ES
dc.description.sponsorship The research of all authors was partially supported by GVA AICO/2016/054 . The research of the second author was partially supported by the project MTM2016-76647-P. es_ES
dc.language Inglés es_ES
dc.publisher Springer-Verlag es_ES
dc.relation.ispartof Mathematische Zeitschrift es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Extension operator es_ES
dc.subject Spaces of smooth functions es_ES
dc.subject.classification MATEMATICA APLICADA es_ES
dc.title Extension operators for smooth functions on compact subsets of the reals es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1007/s00209-019-02388-5 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/GVA//AICO%2F2016%2F054/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//MTM2016-76647-P/ES/ANALISIS FUNCIONAL, TEORIA DE OPERADORES Y ANALISIS TIEMPO-FRECUENCIA/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Matemática Aplicada - Departament de Matemàtica Aplicada es_ES
dc.description.bibliographicCitation Frerick, L.; Jorda Mora, E.; Wengenroth, J. (2020). Extension operators for smooth functions on compact subsets of the reals. Mathematische Zeitschrift. 295(3-4):1537-1552. https://doi.org/10.1007/s00209-019-02388-5 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1007/s00209-019-02388-5 es_ES
dc.description.upvformatpinicio 1537 es_ES
dc.description.upvformatpfin 1552 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 295 es_ES
dc.description.issue 3-4 es_ES
dc.relation.pasarela S\420210 es_ES
dc.contributor.funder Generalitat Valenciana es_ES
dc.contributor.funder AGENCIA ESTATAL DE INVESTIGACION es_ES
dc.description.references Bos, Len P., Milman, Pierre D.: Sobolev–Gagliardo–Nirenberg and Markov type inequalities on subanalytic domains. Geom. Funct. Anal. 5(6), 853–923 (1995) es_ES
dc.description.references Bierstone, Edward, Milman, Pierre D.: Geometric and differential properties of subanalytic sets. Ann. Math. (2) 147(3), 731–785 (1998) es_ES
dc.description.references Bierstone, Edward, Milman, Pierre D., Pawłucki, Wiesław: Composite differentiable functions. Duke Math. J. 83(3), 607–620 (1996) es_ES
dc.description.references DeVore, Ronald A., Lorentz, George G.: Constructive approximation, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 303. Springer, Berlin (1993) es_ES
dc.description.references Fefferman, Charles: $$C^m$$ extension by linear operators. Ann. Math. (2) 166(3), 779–835 (2007) es_ES
dc.description.references Frerick, Leonhard, Jordá, Enrique, Wengenroth, Jochen: Tame linear extension operators for smooth Whitney functions. J. Funct. Anal. 261(3), 591–603 (2011) es_ES
dc.description.references Frerick, Leonhard, Jordá, Enrique, Wengenroth, Jochen: Whitney extension operators without loss of derivatives. Rev. Mat. Iberoam. 32(2), 377–390 (2016) es_ES
dc.description.references Fefferman, Charles, Ricci, Fulvio: Some examples of $$C^\infty $$ extension by linear operators. Rev. Mat. Iberoam. 28(1), 297–304 (2012) es_ES
dc.description.references Frerick, Leonhard: Extension operators for spaces of infinite differentiable Whitney jets. J. Reine Angew. Math. 602, 123–154 (2007) es_ES
dc.description.references Goncharov, Alexander: A compact set without Markov’s property but with an extension operator for $$C^\infty $$-functions. Studia Math. 119(1), 27–35 (1996) es_ES
dc.description.references Hörmander, Lars: The analysis of linear partial differential operators. I, second ed., Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 256, Springer, Berlin, Distribution theory and Fourier analysis (1990) es_ES
dc.description.references Malgrange, Bernard: Ideals of differentiable functions, Tata Institute of Fundamental Research Studies in Mathematics, No. 3, Tata Institute of Fundamental Research, Bombay; Oxford University Press, London, (1967) es_ES
dc.description.references Merrien, Jean: Prolongateurs de fonctions différentiables d’une variable réelle. J. Math. Pures Appl. (9) 45, 291–309 (1966) es_ES
dc.description.references Mitjagin, B.S.: Approximate dimension and bases in nuclear spaces. Uspehi Mat. Nauk 16(4 (100)), 63–132 (1961) es_ES
dc.description.references Meise, Reinhold, Vogt, Dietmar: Introduction to functional analysis, Oxford Graduate Texts in Mathematics, vol. 2. The Clarendon Press, Oxford University Press, New York (1997). Translated from the German by M. S. Ramanujan and revised by the authors es_ES
dc.description.references Pawłucki, Wiesław: On the algebra of functions $$\mathscr {C}^k$$-extendable for each $$k$$ finite. Proc. Am. Math. Soc. 133(2), 481–484 (2005). (Electronic) es_ES
dc.description.references Pawłucki, Wiesław, Pleśniak, Wiesław: Extension of $$C^\infty $$ functions from sets with polynomial cusps. Studia Math. 88(3), 279–287 (1988) es_ES
dc.description.references Stein, Elias M.: Singular integrals and differentiability properties of functions, Princeton Mathematical Series, vol. 30. Princeton University Press, Princeton (1970) es_ES
dc.description.references Tidten, Michael: Fortsetzungen von $$C^{\infty }$$-Funktionen, welche auf einer abgeschlossenen Menge in $${ R}^{n}$$ definiert sind. Manuscripta Math. 27(3), 291–312 (1979) es_ES
dc.description.references Vogt, Dietmar: Restriction spaces of $$A^\infty $$. Rev. Mat. Iberoam. 30(1), 65–78 (2014) es_ES
dc.description.references Vogt, Dietmar, Wagner, Max Josef: Charakterisierung der Quotientenräume von $$s$$ und eine Vermutung von Martineau. Studia Math. 67(3), 225–240 (1980) es_ES
dc.description.references Wengenroth, Jochen: Derived functors in functional analysis. Lecture Notes in Mathematics, vol. 1810. Springer, Berlin (2003) es_ES
dc.description.references Whitney, Hassler: Analytic extensions of differentiable functions defined in closed sets. Trans. Am. Math. Soc. 36(1), 63–89 (1934) es_ES
dc.description.references Whitney, Hassler: On ideals of differentiable functions. Am. J. Math. 70, 635–658 (1948) es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem