- -

Extension operators for smooth functions on compact subsets of the reals

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Extension operators for smooth functions on compact subsets of the reals

Mostrar el registro completo del ítem

Frerick, L.; Jorda Mora, E.; Wengenroth, J. (2020). Extension operators for smooth functions on compact subsets of the reals. Mathematische Zeitschrift. 295(3-4):1537-1552. https://doi.org/10.1007/s00209-019-02388-5

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/172322

Ficheros en el ítem

Metadatos del ítem

Título: Extension operators for smooth functions on compact subsets of the reals
Autor: Frerick, Leonhard Jorda Mora, Enrique Wengenroth, Jochen
Entidad UPV: Universitat Politècnica de València. Departamento de Matemática Aplicada - Departament de Matemàtica Aplicada
Fecha difusión:
Resumen:
[EN] We introduce sufficient as well as necessary conditions for a compact set K such that there is a continuous linear extension operator from the space of restrictions C-infinity (K) = {F vertical bar(K) : F is an element ...[+]
Palabras clave: Extension operator , Spaces of smooth functions
Derechos de uso: Reserva de todos los derechos
Fuente:
Mathematische Zeitschrift. (issn: 0025-5874 )
DOI: 10.1007/s00209-019-02388-5
Editorial:
Springer-Verlag
Versión del editor: https://doi.org/10.1007/s00209-019-02388-5
Código del Proyecto:
info:eu-repo/grantAgreement/GVA//AICO%2F2016%2F054/
info:eu-repo/grantAgreement/MINECO//MTM2016-76647-P/ES/ANALISIS FUNCIONAL, TEORIA DE OPERADORES Y ANALISIS TIEMPO-FRECUENCIA/
Agradecimientos:
The research of all authors was partially supported by GVA AICO/2016/054 . The research of the second author was partially supported by the project MTM2016-76647-P.
Tipo: Artículo

References

Bos, Len P., Milman, Pierre D.: Sobolev–Gagliardo–Nirenberg and Markov type inequalities on subanalytic domains. Geom. Funct. Anal. 5(6), 853–923 (1995)

Bierstone, Edward, Milman, Pierre D.: Geometric and differential properties of subanalytic sets. Ann. Math. (2) 147(3), 731–785 (1998)

Bierstone, Edward, Milman, Pierre D., Pawłucki, Wiesław: Composite differentiable functions. Duke Math. J. 83(3), 607–620 (1996) [+]
Bos, Len P., Milman, Pierre D.: Sobolev–Gagliardo–Nirenberg and Markov type inequalities on subanalytic domains. Geom. Funct. Anal. 5(6), 853–923 (1995)

Bierstone, Edward, Milman, Pierre D.: Geometric and differential properties of subanalytic sets. Ann. Math. (2) 147(3), 731–785 (1998)

Bierstone, Edward, Milman, Pierre D., Pawłucki, Wiesław: Composite differentiable functions. Duke Math. J. 83(3), 607–620 (1996)

DeVore, Ronald A., Lorentz, George G.: Constructive approximation, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 303. Springer, Berlin (1993)

Fefferman, Charles: $$C^m$$ extension by linear operators. Ann. Math. (2) 166(3), 779–835 (2007)

Frerick, Leonhard, Jordá, Enrique, Wengenroth, Jochen: Tame linear extension operators for smooth Whitney functions. J. Funct. Anal. 261(3), 591–603 (2011)

Frerick, Leonhard, Jordá, Enrique, Wengenroth, Jochen: Whitney extension operators without loss of derivatives. Rev. Mat. Iberoam. 32(2), 377–390 (2016)

Fefferman, Charles, Ricci, Fulvio: Some examples of $$C^\infty $$ extension by linear operators. Rev. Mat. Iberoam. 28(1), 297–304 (2012)

Frerick, Leonhard: Extension operators for spaces of infinite differentiable Whitney jets. J. Reine Angew. Math. 602, 123–154 (2007)

Goncharov, Alexander: A compact set without Markov’s property but with an extension operator for $$C^\infty $$-functions. Studia Math. 119(1), 27–35 (1996)

Hörmander, Lars: The analysis of linear partial differential operators. I, second ed., Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 256, Springer, Berlin, Distribution theory and Fourier analysis (1990)

Malgrange, Bernard: Ideals of differentiable functions, Tata Institute of Fundamental Research Studies in Mathematics, No. 3, Tata Institute of Fundamental Research, Bombay; Oxford University Press, London, (1967)

Merrien, Jean: Prolongateurs de fonctions différentiables d’une variable réelle. J. Math. Pures Appl. (9) 45, 291–309 (1966)

Mitjagin, B.S.: Approximate dimension and bases in nuclear spaces. Uspehi Mat. Nauk 16(4 (100)), 63–132 (1961)

Meise, Reinhold, Vogt, Dietmar: Introduction to functional analysis, Oxford Graduate Texts in Mathematics, vol. 2. The Clarendon Press, Oxford University Press, New York (1997). Translated from the German by M. S. Ramanujan and revised by the authors

Pawłucki, Wiesław: On the algebra of functions $$\mathscr {C}^k$$-extendable for each $$k$$ finite. Proc. Am. Math. Soc. 133(2), 481–484 (2005). (Electronic)

Pawłucki, Wiesław, Pleśniak, Wiesław: Extension of $$C^\infty $$ functions from sets with polynomial cusps. Studia Math. 88(3), 279–287 (1988)

Stein, Elias M.: Singular integrals and differentiability properties of functions, Princeton Mathematical Series, vol. 30. Princeton University Press, Princeton (1970)

Tidten, Michael: Fortsetzungen von $$C^{\infty }$$-Funktionen, welche auf einer abgeschlossenen Menge in $${ R}^{n}$$ definiert sind. Manuscripta Math. 27(3), 291–312 (1979)

Vogt, Dietmar: Restriction spaces of $$A^\infty $$. Rev. Mat. Iberoam. 30(1), 65–78 (2014)

Vogt, Dietmar, Wagner, Max Josef: Charakterisierung der Quotientenräume von $$s$$ und eine Vermutung von Martineau. Studia Math. 67(3), 225–240 (1980)

Wengenroth, Jochen: Derived functors in functional analysis. Lecture Notes in Mathematics, vol. 1810. Springer, Berlin (2003)

Whitney, Hassler: Analytic extensions of differentiable functions defined in closed sets. Trans. Am. Math. Soc. 36(1), 63–89 (1934)

Whitney, Hassler: On ideals of differentiable functions. Am. J. Math. 70, 635–658 (1948)

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem