- -

Who Risks and Wins? - Simulated Cost Variance in Sustainable Construction Projects

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Who Risks and Wins? - Simulated Cost Variance in Sustainable Construction Projects

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Górecki, Jaroslaw es_ES
dc.contributor.author Díaz-Madroñero Boluda, Francisco Manuel es_ES
dc.date.accessioned 2021-09-15T03:30:48Z
dc.date.available 2021-09-15T03:30:48Z
dc.date.issued 2020-04 es_ES
dc.identifier.uri http://hdl.handle.net/10251/172516
dc.description.abstract [EN] More and more construction projects are closed before they ever start. Among the most significant reasons for project failures is cost risk. Construction companies have many problems with reliable cost management. Rising demands of the key market players insist on making construction projects more sustainable according to the simultaneous improvement of the economic, environmental and social responsiveness dimensions. In order to investigate these problems, a four-phase research methodology has been followed consisting of: (1) literature review to identify research trends and gaps, (2) survey to construction experts to detect their subjective perspectives about risk costs and analyse the corresponding costs structure for the investment in sustainable projects, (3) simulations based on Monte Carlo simulation with an author's methodology for calculating the cost risk with an additional statistical analysis, (4) ending questionnaire to obtain the final feedback from the experts and the validation of obtained results. A contribution to the development of knowledge about cost risk is the observation that the changing probability distributions of individual cost-generating components may include both economic as well as technological and organizational aspects. Thus, with the proposed approach, often complex, global challenges of sustainable construction projects can be tackled in an accessible way. es_ES
dc.description.sponsorship Statutory research at the UTP University of Science and Technology, Bydgoszcz, Poland. es_ES
dc.language Inglés es_ES
dc.publisher MDPI AG es_ES
dc.relation.ispartof Sustainability es_ES
dc.rights Reconocimiento (by) es_ES
dc.subject Cost risk es_ES
dc.subject Construction project es_ES
dc.subject Contingency es_ES
dc.subject Monte Carlo simulations es_ES
dc.subject.classification ORGANIZACION DE EMPRESAS es_ES
dc.title Who Risks and Wins? - Simulated Cost Variance in Sustainable Construction Projects es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.3390/su12083370 es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Organización de Empresas - Departament d'Organització d'Empreses es_ES
dc.description.bibliographicCitation Górecki, J.; Díaz-Madroñero Boluda, FM. (2020). Who Risks and Wins? - Simulated Cost Variance in Sustainable Construction Projects. Sustainability. 12(8):1-31. https://doi.org/10.3390/su12083370 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.3390/su12083370 es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 31 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 12 es_ES
dc.description.issue 8 es_ES
dc.identifier.eissn 2071-1050 es_ES
dc.relation.pasarela S\408139 es_ES
dc.contributor.funder Bydgoszcz University of Science and Technology, Polonia es_ES
dc.description.references Wong, J. M. W., Thomas Ng, S., & Chan, A. P. C. (2010). Strategic planning for the sustainable development of the construction industry in Hong Kong. Habitat International, 34(2), 256-263. doi:10.1016/j.habitatint.2009.10.002 es_ES
dc.description.references Sobotka, A. (2017). Innovative solutions in engineering of construction projects. Procedia Engineering, 208, 160-165. doi:10.1016/j.proeng.2017.11.034 es_ES
dc.description.references Kaplinski, O. (2013). Risk Management of Construction Works by Means of the Utility Theory: A Case Study. Procedia Engineering, 57, 533-539. doi:10.1016/j.proeng.2013.04.068 es_ES
dc.description.references Diekmann, J. E., & Featherman, W. D. (1998). Assessing Cost Uncertainty: Lessons from Environmental Restoration Projects. Journal of Construction Engineering and Management, 124(6), 445-451. doi:10.1061/(asce)0733-9364(1998)124:6(445) es_ES
dc.description.references Špačková, O., Novotná, E., Šejnoha, M., & Šejnoha, J. (2013). Probabilistic models for tunnel construction risk assessment. Advances in Engineering Software, 62-63, 72-84. doi:10.1016/j.advengsoft.2013.04.002 es_ES
dc.description.references Wang, W.-C., Wang, S.-H., Tsui, Y.-K., & Hsu, C.-H. (2012). A factor-based probabilistic cost model to support bid-price estimation. Expert Systems with Applications, 39(5), 5358-5366. doi:10.1016/j.eswa.2011.11.049 es_ES
dc.description.references Alwan, Z., Jones, P., & Holgate, P. (2017). Strategic sustainable development in the UK construction industry, through the framework for strategic sustainable development, using Building Information Modelling. Journal of Cleaner Production, 140, 349-358. doi:10.1016/j.jclepro.2015.12.085 es_ES
dc.description.references Chen, Y., Okudan, G. E., & Riley, D. R. (2010). Sustainable performance criteria for construction method selection in concrete buildings. Automation in Construction, 19(2), 235-244. doi:10.1016/j.autcon.2009.10.004 es_ES
dc.description.references Opoku, D.-G. J., Ayarkwa, J., & Agyekum, K. (2019). Barriers to environmental sustainability of construction projects. Smart and Sustainable Built Environment, 8(4), 292-306. doi:10.1108/sasbe-08-2018-0040 es_ES
dc.description.references Freire-Guerrero, A., Alba-Rodríguez, M. D., & Marrero, M. (2019). A budget for the ecological footprint of buildings is possible: A case study using the dwelling construction cost database of Andalusia. Sustainable Cities and Society, 51, 101737. doi:10.1016/j.scs.2019.101737 es_ES
dc.description.references Cheng, W., Sodagar, B., & Sun, F. (2017). Comparative analysis of environmental performance of an office building using BREEAM and GBL. International Journal of Sustainable Development and Planning, 12(03), 528-540. doi:10.2495/sdp-v12-n3-528-540 es_ES
dc.description.references Wang, G. B., He, G. Y., & Bian, L. (2011). Sustainable Construction Project under Lean Construction Theory. Advanced Materials Research, 250-253, 3345-3349. doi:10.4028/www.scientific.net/amr.250-253.3345 es_ES
dc.description.references Zhong, Z. Y., & Chen, Y. G. (2011). Principles of Sustainable Construction Project Management Based on Lean Construction. Advanced Materials Research, 225-226, 766-770. doi:10.4028/www.scientific.net/amr.225-226.766 es_ES
dc.description.references Rafindadi, A. D., Mikić, M., Kovačić, I., & Cekić, Z. (2014). Global Perception of Sustainable Construction Project Risks. Procedia - Social and Behavioral Sciences, 119, 456-465. doi:10.1016/j.sbspro.2014.03.051 es_ES
dc.description.references Solís-Guzmán, J., Rivero-Camacho, C., Alba-Rodríguez, D., & Martínez-Rocamora, A. (2018). Carbon Footprint Estimation Tool for Residential Buildings for Non-Specialized Users: OERCO2 Project. Sustainability, 10(5), 1359. doi:10.3390/su10051359 es_ES
dc.description.references Baldry, D. (1998). The evaluation of risk management in public sector capital projects. International Journal of Project Management, 16(1), 35-41. doi:10.1016/s0263-7863(97)00015-x es_ES
dc.description.references Ranasinghe, M. (1994). Contingency allocation and management for building projects. Construction Management and Economics, 12(3), 233-243. doi:10.1080/01446199400000031 es_ES
dc.description.references Plebankiewicz, E., Zima, K., & Wieczorek, D. (2016). Life Cycle Cost Modelling of Buildings with Consideration of the Risk. Archives of Civil Engineering, 62(2), 149-166. doi:10.1515/ace-2015-0071 es_ES
dc.description.references Heralova, R. S. (2014). Life Cycle Cost Optimization Within Decision Making on Alternative Designs of Public Buildings. Procedia Engineering, 85, 454-463. doi:10.1016/j.proeng.2014.10.572 es_ES
dc.description.references Hwang, B.-G., Shan, M., Phua, H., & Chi, S. (2017). An Exploratory Analysis of Risks in Green Residential Building Construction Projects: The Case of Singapore. Sustainability, 9(7), 1116. doi:10.3390/su9071116 es_ES
dc.description.references Lee, J. K., Han, S. H., Jang, W., & Jung, W. (2017). «Win-win strategy» for sustainable relationship between general contractors and subcontractors in international construction projects. KSCE Journal of Civil Engineering, 22(2), 428-439. doi:10.1007/s12205-017-1613-7 es_ES
dc.description.references Artto, K. A., Lehtonen, J.-M., & Saranen, J. (2001). Managing projects front-end: incorporating a strategic early view to project management with simulation. International Journal of Project Management, 19(5), 255-264. doi:10.1016/s0263-7863(99)00082-4 es_ES
dc.description.references Walȩdzik, K., & Mańdziuk, J. (2018). Applying hybrid Monte Carlo Tree Search methods to Risk-Aware Project Scheduling Problem. Information Sciences, 460-461, 450-468. doi:10.1016/j.ins.2017.08.049 es_ES
dc.description.references Van Slyke, R. M. (1963). Letter to the Editor—Monte Carlo Methods and the PERT Problem. Operations Research, 11(5), 839-860. doi:10.1287/opre.11.5.839 es_ES
dc.description.references Chau, K. W. (1995). Monte Carlo simulation of construction costs using subjective data. Construction Management and Economics, 13(5), 369-383. doi:10.1080/01446199500000042 es_ES
dc.description.references Beeston *, D. (1986). Combining risks in estimating. Construction Management and Economics, 4(1), 75-79. doi:10.1080/01446198600000005 es_ES
dc.description.references Górecki, J., & Płoszaj, E. (2019). Cost risk of construction of small hydroelectric power plants. MATEC Web of Conferences, 262, 07004. doi:10.1051/matecconf/201926207004 es_ES
dc.description.references Zhang, H. Y., & Yang, G. B. (2011). Review of Study on Risk Management for the Construction Project. Advanced Materials Research, 243-249, 6404-6409. doi:10.4028/www.scientific.net/amr.243-249.6404 es_ES
dc.description.references Xia, N., Zou, P. X. W., Griffin, M. A., Wang, X., & Zhong, R. (2018). Towards integrating construction risk management and stakeholder management: A systematic literature review and future research agendas. International Journal of Project Management, 36(5), 701-715. doi:10.1016/j.ijproman.2018.03.006 es_ES
dc.description.references Siraj, N. B., & Fayek, A. R. (2019). Risk Identification and Common Risks in Construction: Literature Review and Content Analysis. Journal of Construction Engineering and Management, 145(9), 03119004. doi:10.1061/(asce)co.1943-7862.0001685 es_ES
dc.description.references Díaz-Madroñero, M., Mula, J., & Peidro, D. (2014). A review of discrete-time optimization models for tactical production planning. International Journal of Production Research, 52(17), 5171-5205. doi:10.1080/00207543.2014.899721 es_ES
dc.description.references Díaz-Madroñero, M., Peidro, D., & Mula, J. (2015). A review of tactical optimization models for integrated production and transport routing planning decisions. Computers & Industrial Engineering, 88, 518-535. doi:10.1016/j.cie.2015.06.010 es_ES
dc.description.references Li, B., Akintoye, A., Edwards, P. J., & Hardcastle, C. (2005). Perceptions of positive and negative factors influencing the attractiveness of PPP/PFI procurement for construction projects in the UK. Engineering, Construction and Architectural Management, 12(2), 125-148. doi:10.1108/09699980510584485 es_ES
dc.description.references Zou, P. X. W., Zhang, G., & Wang, J. (2007). Understanding the key risks in construction projects in China. International Journal of Project Management, 25(6), 601-614. doi:10.1016/j.ijproman.2007.03.001 es_ES
dc.description.references Mohamed, F. D. (2012). Integrating Risk Assessment in Planning for Sustainable Infrastructure Projects. ICSDEC 2012. doi:10.1061/9780784412688.042 es_ES
dc.description.references Taylan, O., Bafail, A. O., Abdulaal, R. M. S., & Kabli, M. R. (2014). Construction projects selection and risk assessment by fuzzy AHP and fuzzy TOPSIS methodologies. Applied Soft Computing, 17, 105-116. doi:10.1016/j.asoc.2014.01.003 es_ES
dc.description.references Chou, J.-S., & Le, T.-S. (2014). Probabilistic multiobjective optimization of sustainable engineering design. KSCE Journal of Civil Engineering, 18(4), 853-864. doi:10.1007/s12205-014-0373-x es_ES
dc.description.references Dziadosz, A., Tomczyk, A., & Kapliński, O. (2015). Financial Risk Estimation in Construction Contracts. Procedia Engineering, 122, 120-128. doi:10.1016/j.proeng.2015.10.015 es_ES
dc.description.references Lee, S., & Kim, K. (2015). Collar Option Model for Managing the Cost Overrun Caused by Change Orders. Sustainability, 7(8), 10649-10663. doi:10.3390/su70810649 es_ES
dc.description.references Kankhva, V. (2016). Methodic Approaches to Cost Evaluation of Innovation Projects in Underground Development. Procedia Engineering, 165, 1305-1309. doi:10.1016/j.proeng.2016.11.855 es_ES
dc.description.references Badi, S. M., & Pryke, S. (2016). Assessing the impact of risk allocation on sustainable energy innovation (SEI). International Journal of Managing Projects in Business, 9(2), 259-281. doi:10.1108/ijmpb-10-2015-0103 es_ES
dc.description.references Ayub, B., Thaheem, M. J., & Din, Z. ud. (2016). Dynamic Management of Cost Contingency: Impact of KPIs and Risk Perception. Procedia Engineering, 145, 82-87. doi:10.1016/j.proeng.2016.04.021 es_ES
dc.description.references Ali, Z., Zhu, F., & Hussain, S. (2018). Risk Assessment of Ex-Post Transaction Cost in Construction Projects Using Structural Equation Modeling. Sustainability, 10(11), 4017. doi:10.3390/su10114017 es_ES
dc.description.references Baudrit, C., Taillandier, F., Tran, T. T. P., & Breysse, D. (2018). Uncertainty Processing and Risk Monitoring in Construction Projects Using Hierarchical Probabilistic Relational Models. Computer-Aided Civil and Infrastructure Engineering, 34(2), 97-115. doi:10.1111/mice.12391 es_ES
dc.description.references Flyvbjerg, B., Ansar, A., Budzier, A., Buhl, S., Cantarelli, C., Garbuio, M., … van Wee, B. (2018). Five things you should know about cost overrun. Transportation Research Part A: Policy and Practice, 118, 174-190. doi:10.1016/j.tra.2018.07.013 es_ES
dc.description.references Cantarelli, C. C., van Wee, B., Molin, E. J. E., & Flyvbjerg, B. (2012). Different cost performance: different determinants? Transport Policy, 22, 88-95. doi:10.1016/j.tranpol.2012.04.002 es_ES
dc.description.references Cantarelli, C. C., Molin, E. J. E., van Wee, B., & Flyvbjerg, B. (2012). Characteristics of cost overruns for Dutch transport infrastructure projects and the importance of the decision to build and project phases. Transport Policy, 22, 49-56. doi:10.1016/j.tranpol.2012.04.001 es_ES
dc.description.references Skamris, M. K., & Flyvbjerg, B. (1997). Inaccuracy of traffic forecasts and cost estimates on large transport projects. Transport Policy, 4(3), 141-146. doi:10.1016/s0967-070x(97)00007-3 es_ES
dc.description.references Flyvbjerg, B., Skamris holm, M. K., & Buhl, S. L. (2003). How common and how large are cost overruns in transport infrastructure projects? Transport Reviews, 23(1), 71-88. doi:10.1080/01441640309904 es_ES
dc.description.references Plebankiewicz, E. (2018). Model of Predicting Cost Overrun in Construction Projects. Sustainability, 10(12), 4387. doi:10.3390/su10124387 es_ES
dc.description.references Cavalieri, M., Cristaudo, R., & Guccio, C. (2019). On the magnitude of cost overruns throughout the project life-cycle: An assessment for the Italian transport infrastructure projects. Transport Policy, 79, 21-36. doi:10.1016/j.tranpol.2019.04.001 es_ES
dc.description.references Li, S., Lu, Y., Kua, H. W., & Chang, R. (2020). The economics of green buildings: A life cycle cost analysis of non-residential buildings in tropic climates. Journal of Cleaner Production, 252, 119771. doi:10.1016/j.jclepro.2019.119771 es_ES
dc.description.references Švajlenka, J., & Kozlovská, M. (2020). Evaluation of the efficiency and sustainability of timber-based construction. Journal of Cleaner Production, 259, 120835. doi:10.1016/j.jclepro.2020.120835 es_ES
dc.description.references Švajlenka, J., Kozlovská, M., & Pošiváková, T. (2018). Analysis of Selected Building Constructions Used in Industrial Construction in Terms of Sustainability Benefits. Sustainability, 10(12), 4394. doi:10.3390/su10124394 es_ES
dc.description.references Lei, Z., Tang, W., Duffield, C., Zhang, L., Hui, F., & You, R. (2018). Qualitative Analysis of the Occupational Health and Safety Performance of Chinese International Construction Projects. Sustainability, 10(12), 4344. doi:10.3390/su10124344 es_ES
dc.description.references Yang, Y., Tang, W., Shen, W., & Wang, T. (2019). Enhancing Risk Management by Partnering in International EPC Projects: Perspective from Evolutionary Game in Chinese Construction Companies. Sustainability, 11(19), 5332. doi:10.3390/su11195332 es_ES
dc.description.references Kapelko, M., Oude Lansink, A., & Stefanou, S. E. (2014). Assessing dynamic inefficiency of the Spanish construction sector pre- and post-financial crisis. European Journal of Operational Research, 237(1), 349-357. doi:10.1016/j.ejor.2014.01.047 es_ES
dc.description.references Sfakianaki, E., Iliadis, T., & Zafeiris, E. (2015). Crisis management under an economic recession in construction: the Greek case. International Journal of Management and Decision Making, 14(4), 373. doi:10.1504/ijmdm.2015.074015 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem