- -

Sustainable Cooking Based on a 3 kW Air-Forced Multifuel Gasification Stove Using Alternative Fuels Obtained from Agricultural Wastes

RiuNet: Institutional repository of the Polithecnic University of Valencia

Share/Send to

Cited by

Statistics

Sustainable Cooking Based on a 3 kW Air-Forced Multifuel Gasification Stove Using Alternative Fuels Obtained from Agricultural Wastes

Show full item record

Hurtado-Perez, E.; Mulumba Ilunga, O.; Alfonso-Solar, D.; Moros Gómez, MC.; Bastida-Molina, P. (2020). Sustainable Cooking Based on a 3 kW Air-Forced Multifuel Gasification Stove Using Alternative Fuels Obtained from Agricultural Wastes. Sustainability. 12(18):1-15. https://doi.org/10.3390/su12187723

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/172652

Files in this item

Item Metadata

Title: Sustainable Cooking Based on a 3 kW Air-Forced Multifuel Gasification Stove Using Alternative Fuels Obtained from Agricultural Wastes
Author: Hurtado-Perez, Elias Mulumba Ilunga, Oscar Alfonso-Solar, David Moros Gómez, María Cristina Bastida-Molina, Paula
UPV Unit: Universitat Politècnica de València. Departamento de Termodinámica Aplicada - Departament de Termodinàmica Aplicada
Universitat Politècnica de València. Departamento de Ingeniería Eléctrica - Departament d'Enginyeria Elèctrica
Issued date:
Abstract:
[EN] In this research work, a 3 kW stove based on biomass gasification, together with a fuel obtained from agriculture wastes as an alternative to the commonly used charcoal, have been developed looking for sustainable ...[+]
Subjects: Cook stove , Alternative fuel , Gasification , Sustainability
Copyrigths: Reconocimiento (by)
Source:
Sustainability. (eissn: 2071-1050 )
DOI: 10.3390/su12187723
Publisher:
MDPI AG
Publisher version: https://doi.org/10.3390/su12187723
Project ID:
info:eu-repo/grantAgreement/GVA//ACIF%2F2018%2F106/
Thanks:
This research received no external funding. P.B.M. was funded by the Generalitat Valenciana under the grant ACIF/2018/106.
Type: Artículo

References

Bhutto, A. W., Bazmi, A. A., Karim, S., Abro, R., Mazari, S. A., & Nizamuddin, S. (2019). Promoting sustainability of use of biomass as energy resource: Pakistan’s perspective. Environmental Science and Pollution Research, 26(29), 29606-29619. doi:10.1007/s11356-019-06179-7

Maes, W. H., & Verbist, B. (2012). Increasing the sustainability of household cooking in developing countries: Policy implications. Renewable and Sustainable Energy Reviews, 16(6), 4204-4221. doi:10.1016/j.rser.2012.03.031

Zhang, Y., Zhang, Z., Zhou, Y., & Dong, R. (2018). The Influences of Various Testing Conditions on the Evaluation of Household Biomass Pellet Fuel Combustion. Energies, 11(5), 1131. doi:10.3390/en11051131 [+]
Bhutto, A. W., Bazmi, A. A., Karim, S., Abro, R., Mazari, S. A., & Nizamuddin, S. (2019). Promoting sustainability of use of biomass as energy resource: Pakistan’s perspective. Environmental Science and Pollution Research, 26(29), 29606-29619. doi:10.1007/s11356-019-06179-7

Maes, W. H., & Verbist, B. (2012). Increasing the sustainability of household cooking in developing countries: Policy implications. Renewable and Sustainable Energy Reviews, 16(6), 4204-4221. doi:10.1016/j.rser.2012.03.031

Zhang, Y., Zhang, Z., Zhou, Y., & Dong, R. (2018). The Influences of Various Testing Conditions on the Evaluation of Household Biomass Pellet Fuel Combustion. Energies, 11(5), 1131. doi:10.3390/en11051131

Mwampamba, T. H., Ghilardi, A., Sander, K., & Chaix, K. J. (2013). Dispelling common misconceptions to improve attitudes and policy outlook on charcoal in developing countries. Energy for Sustainable Development, 17(2), 75-85. doi:10.1016/j.esd.2013.01.001

Jones, D., Ryan, C. M., & Fisher, J. (2016). Charcoal as a diversification strategy: The flexible role of charcoal production in the livelihoods of smallholders in central Mozambique. Energy for Sustainable Development, 32, 14-21. doi:10.1016/j.esd.2016.02.009

Chiteculo, V., Lojka, B., Surový, P., Verner, V., Panagiotidis, D., & Woitsch, J. (2018). Value Chain of Charcoal Production and Implications for Forest Degradation: Case Study of Bié Province, Angola. Environments, 5(11), 113. doi:10.3390/environments5110113

Lynch, M. (2002). Reducing Environmental Damage Caused by the Collection of Cooking Fuel by Refugees. Refuge: Canada’s Journal on Refugees, 18-27. doi:10.25071/1920-7336.21280

Barbieri, J., Parigi, F., Riva, F., & Colombo, E. (2018). Laboratory Testing of the Innovative Low-Cost Mewar Angithi Insert for Improving Energy Efficiency of Cooking Tasks on Three-Stone Fires in Critical Contexts. Energies, 11(12), 3463. doi:10.3390/en11123463

Ramanathan, V., & Carmichael, G. (2008). Global and regional climate changes due to black carbon. Nature Geoscience, 1(4), 221-227. doi:10.1038/ngeo156

Ndindeng, S. A., Wopereis, M., Sanyang, S., & Futakuchi, K. (2019). Evaluation of fan-assisted rice husk fuelled gasifier cookstoves for application in sub-Sahara Africa. Renewable Energy, 139, 924-935. doi:10.1016/j.renene.2019.02.132

Jagger, P., & Das, I. (2018). Implementation and scale-up of a biomass pellet and improved cookstove enterprise in Rwanda. Energy for Sustainable Development, 46, 32-41. doi:10.1016/j.esd.2018.06.005

Gitau, J. K., Sundberg, C., Mendum, R., Mutune, J., & Njenga, M. (2019). Use of Biochar-Producing Gasifier Cookstove Improves Energy Use Efficiency and Indoor Air Quality in Rural Households. Energies, 12(22), 4285. doi:10.3390/en12224285

Kirch, T., Medwell, P. R., Birzer, C. H., & van Eyk, P. J. (2020). Feedstock Dependence of Emissions from a Reverse-Downdraft Gasifier Cookstove. Energy for Sustainable Development, 56, 42-50. doi:10.1016/j.esd.2020.02.008

Dresen, E., DeVries, B., Herold, M., Verchot, L., & Müller, R. (2014). Fuelwood Savings and Carbon Emission Reductions by the Use of Improved Cooking Stoves in an Afromontane Forest, Ethiopia. Land, 3(3), 1137-1157. doi:10.3390/land3031137

Barbieri, J., Riva, F., & Colombo, E. (2017). Cooking in refugee camps and informal settlements: A review of available technologies and impacts on the socio-economic and environmental perspective. Sustainable Energy Technologies and Assessments, 22, 194-207. doi:10.1016/j.seta.2017.02.007

Tucho, G., & Nonhebel, S. (2015). Bio-Wastes as an Alternative Household Cooking Energy Source in Ethiopia. Energies, 8(9), 9565-9583. doi:10.3390/en8099565

Smith, K. R., Uma, R., Kishore, V. V. N., Zhang, J., Joshi, V., & Khalil, M. A. K. (2000). Greenhouse Implications of Household Stoves: An Analysis for India. Annual Review of Energy and the Environment, 25(1), 741-763. doi:10.1146/annurev.energy.25.1.741

Bhojvaid, V., Jeuland, M., Kar, A., Lewis, J., Pattanayak, S., Ramanathan, N., … Rehman, I. (2014). How do People in Rural India Perceive Improved Stoves and Clean Fuel? Evidence from Uttar Pradesh and Uttarakhand. International Journal of Environmental Research and Public Health, 11(2), 1341-1358. doi:10.3390/ijerph110201341

Loo, J., Hyseni, L., Ouda, R., Koske, S., Nyagol, R., Sadumah, I., … Stanistreet, D. (2016). User Perspectives of Characteristics of Improved Cookstoves from a Field Evaluation in Western Kenya. International Journal of Environmental Research and Public Health, 13(2), 167. doi:10.3390/ijerph13020167

Perspective Monde 2020https://perspective.usherbrooke.ca/bilan/servlet/BMTendanceStatPays?codeTheme=5&codeStat=RS.NUT.PROD.PP.MT&codePays=COD&optionsPeriodes=Aucune&codeTheme2=5&codeStat2=RSA.FAO.RicePaddy&codePays2=COD&optionsDetPeriodes=avecNomP&langue=fr

Strategie Nationale De Developpement De La Riziculture (SNDR)https://riceforafrica.net/images/pdf/NRDS_drc_fr-min.pdf

Panwar, N. L., & Rathore, N. S. (2008). Design and performance evaluation of a 5kW producer gas stove. Biomass and Bioenergy, 32(12), 1349-1352. doi:10.1016/j.biombioe.2008.04.007

Panwar, N. L., Kurchania, A. K., & Rathore, N. S. (2009). Mitigation of greenhouse gases by adoption of improved biomass cookstoves. Mitigation and Adaptation Strategies for Global Change, 14(6), 569-578. doi:10.1007/s11027-009-9184-7

Normas UNE-AENOR (Spain)https://www.aenor.com/normas-y-libros/buscador-de-normas?k=(i:7516040)

Hurtado Pérez, E. J., Mulumba Ilunga, O., Moros Gómez, M. C., & Vargas Salgado, C. (2017). Analyse des impacts économico-environnementaux du changement d’usage d’un foyer de cuisson traditionnel par un foyer de cuisson amélioré optimisé à charbon de bois dans les ménages de la ville de Kinshasa. Déchets, sciences et techniques, (N°75). doi:10.4267/dechets-sciences-techniques.3714

Siva Kumar, S., Pitchandi, K., & Natarajan, E. (2008). Modeling and Simulation of Down Draft Wood Gasifier. Journal of Applied Sciences, 8(2), 271-279. doi:10.3923/jas.2008.271.279

Ojolo, S. J., Abolarin, S. M., & Adegbenro, O. (2012). Development of a Laboratory Scale Updraft Gasifier. International Journal of Manufacturing Systems, 2(2), 21-42. doi:10.3923/ijmsaj.2012.21.42

Panwar, N. L. (2009). Design and performance evaluation of energy efficient biomass gasifier based cookstove on multi fuels. Mitigation and Adaptation Strategies for Global Change, 14(7), 627-633. doi:10.1007/s11027-009-9187-4

Jetter, J. J., & Kariher, P. (2009). Solid-fuel household cook stoves: Characterization of performance and emissions. Biomass and Bioenergy, 33(2), 294-305. doi:10.1016/j.biombioe.2008.05.014

Berrueta, V. M., Edwards, R. D., & Masera, O. R. (2008). Energy performance of wood-burning cookstoves in Michoacan, Mexico. Renewable Energy, 33(5), 859-870. doi:10.1016/j.renene.2007.04.016

Smith, K. R., Dutta, K., Chengappa, C., Gusain, P. P. S., Berrueta, O. M. and V., Edwards, R., … Shields, K. N. (2007). Monitoring and evaluation of improved biomass cookstove programs for indoor air quality and stove performance: conclusions from the Household Energy and Health Project. Energy for Sustainable Development, 11(2), 5-18. doi:10.1016/s0973-0826(08)60396-8

Bailis, R., Berrueta, V., Chengappa, C., Dutta, K., Edwards, R., Masera, O., … Smith, K. R. (2007). Performance testing for monitoring improved biomass stove interventions: experiences of the Household Energy and Health Project. Energy for Sustainable Development, 11(2), 57-70. doi:10.1016/s0973-0826(08)60400-7

MacCarty, N., Ogle, D., Still, D., Bond, T., & Roden, C. (2008). A laboratory comparison of the global warming impact of five major types of biomass cooking stoves. Energy for Sustainable Development, 12(2), 56-65. doi:10.1016/s0973-0826(08)60429-9

Lombardi, F., Riva, F., Bonamini, G., Barbieri, J., & Colombo, E. (2017). Laboratory protocols for testing of Improved Cooking Stoves (ICSs): A review of state-of-the-art and further developments. Biomass and Bioenergy, 98, 321-335. doi:10.1016/j.biombioe.2017.02.005

Lombardi, F., Riva, F., & Colombo, E. (2018). Dealing with small sets of laboratory test replicates for Improved Cooking Stoves (ICSs): Insights for a robust statistical analysis of results. Biomass and Bioenergy, 115, 27-34. doi:10.1016/j.biombioe.2018.04.004

[-]

recommendations

 

This item appears in the following Collection(s)

Show full item record