Mostrar el registro sencillo del ítem
dc.contributor.author | Hurtado-Perez, Elias | es_ES |
dc.contributor.author | Mulumba Ilunga, Oscar | es_ES |
dc.contributor.author | Alfonso-Solar, David | es_ES |
dc.contributor.author | Moros Gómez, María Cristina | es_ES |
dc.contributor.author | Bastida-Molina, Paula | es_ES |
dc.date.accessioned | 2021-09-17T03:30:40Z | |
dc.date.available | 2021-09-17T03:30:40Z | |
dc.date.issued | 2020-09 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/172652 | |
dc.description.abstract | [EN] In this research work, a 3 kW stove based on biomass gasification, together with a fuel obtained from agriculture wastes as an alternative to the commonly used charcoal, have been developed looking for sustainable cooking in poor communities. Alternative fuel (BSW) are briquettes obtained by carbonization and densification of agricultural solid wastes. Two laboratory methods, water boil test (WBT) and controlled kitchen test (CCT) were used to analyze the performance of this approach by comparing the proposed improved stove (ICS-G) with the traditional one (TCS), when using both types of fuels: charcoal and BSW. Results indicate that consumption of charcoal decreases by 61% using the improved ICS-G stove instead of the traditional TCS. Similar fuel savings are obtained when using BSW fuels. BSW fuel allows for a carbon monoxide (CO) emission reduction of 41% and 67%, and fine particles (PM) in a 84% and 93%, during the high and low power phases of the tests, respectively. Use of BSW fuel and ICS-G stove instead of the TCS stove with charcoal, provides a cooking time reduction of 18%, savings of $353.5 per year per family in the purchase of fuel, and an emission reduction of 3.2 t CO2/year.family. | es_ES |
dc.description.sponsorship | This research received no external funding. P.B.M. was funded by the Generalitat Valenciana under the grant ACIF/2018/106. | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | MDPI AG | es_ES |
dc.relation.ispartof | Sustainability | es_ES |
dc.rights | Reconocimiento (by) | es_ES |
dc.subject | Cook stove | es_ES |
dc.subject | Alternative fuel | es_ES |
dc.subject | Gasification | es_ES |
dc.subject | Sustainability | es_ES |
dc.subject.classification | MAQUINAS Y MOTORES TERMICOS | es_ES |
dc.subject.classification | INGENIERIA ELECTRICA | es_ES |
dc.title | Sustainable Cooking Based on a 3 kW Air-Forced Multifuel Gasification Stove Using Alternative Fuels Obtained from Agricultural Wastes | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.3390/su12187723 | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/GVA//ACIF%2F2018%2F106/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Termodinámica Aplicada - Departament de Termodinàmica Aplicada | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Ingeniería Eléctrica - Departament d'Enginyeria Elèctrica | es_ES |
dc.description.bibliographicCitation | Hurtado-Perez, E.; Mulumba Ilunga, O.; Alfonso-Solar, D.; Moros Gómez, MC.; Bastida-Molina, P. (2020). Sustainable Cooking Based on a 3 kW Air-Forced Multifuel Gasification Stove Using Alternative Fuels Obtained from Agricultural Wastes. Sustainability. 12(18):1-15. https://doi.org/10.3390/su12187723 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.3390/su12187723 | es_ES |
dc.description.upvformatpinicio | 1 | es_ES |
dc.description.upvformatpfin | 15 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 12 | es_ES |
dc.description.issue | 18 | es_ES |
dc.identifier.eissn | 2071-1050 | es_ES |
dc.relation.pasarela | S\418866 | es_ES |
dc.contributor.funder | GENERALITAT VALENCIANA | es_ES |
dc.description.references | Bhutto, A. W., Bazmi, A. A., Karim, S., Abro, R., Mazari, S. A., & Nizamuddin, S. (2019). Promoting sustainability of use of biomass as energy resource: Pakistan’s perspective. Environmental Science and Pollution Research, 26(29), 29606-29619. doi:10.1007/s11356-019-06179-7 | es_ES |
dc.description.references | Maes, W. H., & Verbist, B. (2012). Increasing the sustainability of household cooking in developing countries: Policy implications. Renewable and Sustainable Energy Reviews, 16(6), 4204-4221. doi:10.1016/j.rser.2012.03.031 | es_ES |
dc.description.references | Zhang, Y., Zhang, Z., Zhou, Y., & Dong, R. (2018). The Influences of Various Testing Conditions on the Evaluation of Household Biomass Pellet Fuel Combustion. Energies, 11(5), 1131. doi:10.3390/en11051131 | es_ES |
dc.description.references | Mwampamba, T. H., Ghilardi, A., Sander, K., & Chaix, K. J. (2013). Dispelling common misconceptions to improve attitudes and policy outlook on charcoal in developing countries. Energy for Sustainable Development, 17(2), 75-85. doi:10.1016/j.esd.2013.01.001 | es_ES |
dc.description.references | Jones, D., Ryan, C. M., & Fisher, J. (2016). Charcoal as a diversification strategy: The flexible role of charcoal production in the livelihoods of smallholders in central Mozambique. Energy for Sustainable Development, 32, 14-21. doi:10.1016/j.esd.2016.02.009 | es_ES |
dc.description.references | Chiteculo, V., Lojka, B., Surový, P., Verner, V., Panagiotidis, D., & Woitsch, J. (2018). Value Chain of Charcoal Production and Implications for Forest Degradation: Case Study of Bié Province, Angola. Environments, 5(11), 113. doi:10.3390/environments5110113 | es_ES |
dc.description.references | Lynch, M. (2002). Reducing Environmental Damage Caused by the Collection of Cooking Fuel by Refugees. Refuge: Canada’s Journal on Refugees, 18-27. doi:10.25071/1920-7336.21280 | es_ES |
dc.description.references | Barbieri, J., Parigi, F., Riva, F., & Colombo, E. (2018). Laboratory Testing of the Innovative Low-Cost Mewar Angithi Insert for Improving Energy Efficiency of Cooking Tasks on Three-Stone Fires in Critical Contexts. Energies, 11(12), 3463. doi:10.3390/en11123463 | es_ES |
dc.description.references | Ramanathan, V., & Carmichael, G. (2008). Global and regional climate changes due to black carbon. Nature Geoscience, 1(4), 221-227. doi:10.1038/ngeo156 | es_ES |
dc.description.references | Ndindeng, S. A., Wopereis, M., Sanyang, S., & Futakuchi, K. (2019). Evaluation of fan-assisted rice husk fuelled gasifier cookstoves for application in sub-Sahara Africa. Renewable Energy, 139, 924-935. doi:10.1016/j.renene.2019.02.132 | es_ES |
dc.description.references | Jagger, P., & Das, I. (2018). Implementation and scale-up of a biomass pellet and improved cookstove enterprise in Rwanda. Energy for Sustainable Development, 46, 32-41. doi:10.1016/j.esd.2018.06.005 | es_ES |
dc.description.references | Gitau, J. K., Sundberg, C., Mendum, R., Mutune, J., & Njenga, M. (2019). Use of Biochar-Producing Gasifier Cookstove Improves Energy Use Efficiency and Indoor Air Quality in Rural Households. Energies, 12(22), 4285. doi:10.3390/en12224285 | es_ES |
dc.description.references | Kirch, T., Medwell, P. R., Birzer, C. H., & van Eyk, P. J. (2020). Feedstock Dependence of Emissions from a Reverse-Downdraft Gasifier Cookstove. Energy for Sustainable Development, 56, 42-50. doi:10.1016/j.esd.2020.02.008 | es_ES |
dc.description.references | Dresen, E., DeVries, B., Herold, M., Verchot, L., & Müller, R. (2014). Fuelwood Savings and Carbon Emission Reductions by the Use of Improved Cooking Stoves in an Afromontane Forest, Ethiopia. Land, 3(3), 1137-1157. doi:10.3390/land3031137 | es_ES |
dc.description.references | Barbieri, J., Riva, F., & Colombo, E. (2017). Cooking in refugee camps and informal settlements: A review of available technologies and impacts on the socio-economic and environmental perspective. Sustainable Energy Technologies and Assessments, 22, 194-207. doi:10.1016/j.seta.2017.02.007 | es_ES |
dc.description.references | Tucho, G., & Nonhebel, S. (2015). Bio-Wastes as an Alternative Household Cooking Energy Source in Ethiopia. Energies, 8(9), 9565-9583. doi:10.3390/en8099565 | es_ES |
dc.description.references | Smith, K. R., Uma, R., Kishore, V. V. N., Zhang, J., Joshi, V., & Khalil, M. A. K. (2000). Greenhouse Implications of Household Stoves: An Analysis for India. Annual Review of Energy and the Environment, 25(1), 741-763. doi:10.1146/annurev.energy.25.1.741 | es_ES |
dc.description.references | Bhojvaid, V., Jeuland, M., Kar, A., Lewis, J., Pattanayak, S., Ramanathan, N., … Rehman, I. (2014). How do People in Rural India Perceive Improved Stoves and Clean Fuel? Evidence from Uttar Pradesh and Uttarakhand. International Journal of Environmental Research and Public Health, 11(2), 1341-1358. doi:10.3390/ijerph110201341 | es_ES |
dc.description.references | Loo, J., Hyseni, L., Ouda, R., Koske, S., Nyagol, R., Sadumah, I., … Stanistreet, D. (2016). User Perspectives of Characteristics of Improved Cookstoves from a Field Evaluation in Western Kenya. International Journal of Environmental Research and Public Health, 13(2), 167. doi:10.3390/ijerph13020167 | es_ES |
dc.description.references | Perspective Monde 2020https://perspective.usherbrooke.ca/bilan/servlet/BMTendanceStatPays?codeTheme=5&codeStat=RS.NUT.PROD.PP.MT&codePays=COD&optionsPeriodes=Aucune&codeTheme2=5&codeStat2=RSA.FAO.RicePaddy&codePays2=COD&optionsDetPeriodes=avecNomP&langue=fr | es_ES |
dc.description.references | Strategie Nationale De Developpement De La Riziculture (SNDR)https://riceforafrica.net/images/pdf/NRDS_drc_fr-min.pdf | es_ES |
dc.description.references | Panwar, N. L., & Rathore, N. S. (2008). Design and performance evaluation of a 5kW producer gas stove. Biomass and Bioenergy, 32(12), 1349-1352. doi:10.1016/j.biombioe.2008.04.007 | es_ES |
dc.description.references | Panwar, N. L., Kurchania, A. K., & Rathore, N. S. (2009). Mitigation of greenhouse gases by adoption of improved biomass cookstoves. Mitigation and Adaptation Strategies for Global Change, 14(6), 569-578. doi:10.1007/s11027-009-9184-7 | es_ES |
dc.description.references | Normas UNE-AENOR (Spain)https://www.aenor.com/normas-y-libros/buscador-de-normas?k=(i:7516040) | es_ES |
dc.description.references | Hurtado Pérez, E. J., Mulumba Ilunga, O., Moros Gómez, M. C., & Vargas Salgado, C. (2017). Analyse des impacts économico-environnementaux du changement d’usage d’un foyer de cuisson traditionnel par un foyer de cuisson amélioré optimisé à charbon de bois dans les ménages de la ville de Kinshasa. Déchets, sciences et techniques, (N°75). doi:10.4267/dechets-sciences-techniques.3714 | es_ES |
dc.description.references | Siva Kumar, S., Pitchandi, K., & Natarajan, E. (2008). Modeling and Simulation of Down Draft Wood Gasifier. Journal of Applied Sciences, 8(2), 271-279. doi:10.3923/jas.2008.271.279 | es_ES |
dc.description.references | Ojolo, S. J., Abolarin, S. M., & Adegbenro, O. (2012). Development of a Laboratory Scale Updraft Gasifier. International Journal of Manufacturing Systems, 2(2), 21-42. doi:10.3923/ijmsaj.2012.21.42 | es_ES |
dc.description.references | Panwar, N. L. (2009). Design and performance evaluation of energy efficient biomass gasifier based cookstove on multi fuels. Mitigation and Adaptation Strategies for Global Change, 14(7), 627-633. doi:10.1007/s11027-009-9187-4 | es_ES |
dc.description.references | Jetter, J. J., & Kariher, P. (2009). Solid-fuel household cook stoves: Characterization of performance and emissions. Biomass and Bioenergy, 33(2), 294-305. doi:10.1016/j.biombioe.2008.05.014 | es_ES |
dc.description.references | Berrueta, V. M., Edwards, R. D., & Masera, O. R. (2008). Energy performance of wood-burning cookstoves in Michoacan, Mexico. Renewable Energy, 33(5), 859-870. doi:10.1016/j.renene.2007.04.016 | es_ES |
dc.description.references | Smith, K. R., Dutta, K., Chengappa, C., Gusain, P. P. S., Berrueta, O. M. and V., Edwards, R., … Shields, K. N. (2007). Monitoring and evaluation of improved biomass cookstove programs for indoor air quality and stove performance: conclusions from the Household Energy and Health Project. Energy for Sustainable Development, 11(2), 5-18. doi:10.1016/s0973-0826(08)60396-8 | es_ES |
dc.description.references | Bailis, R., Berrueta, V., Chengappa, C., Dutta, K., Edwards, R., Masera, O., … Smith, K. R. (2007). Performance testing for monitoring improved biomass stove interventions: experiences of the Household Energy and Health Project. Energy for Sustainable Development, 11(2), 57-70. doi:10.1016/s0973-0826(08)60400-7 | es_ES |
dc.description.references | MacCarty, N., Ogle, D., Still, D., Bond, T., & Roden, C. (2008). A laboratory comparison of the global warming impact of five major types of biomass cooking stoves. Energy for Sustainable Development, 12(2), 56-65. doi:10.1016/s0973-0826(08)60429-9 | es_ES |
dc.description.references | Lombardi, F., Riva, F., Bonamini, G., Barbieri, J., & Colombo, E. (2017). Laboratory protocols for testing of Improved Cooking Stoves (ICSs): A review of state-of-the-art and further developments. Biomass and Bioenergy, 98, 321-335. doi:10.1016/j.biombioe.2017.02.005 | es_ES |
dc.description.references | Lombardi, F., Riva, F., & Colombo, E. (2018). Dealing with small sets of laboratory test replicates for Improved Cooking Stoves (ICSs): Insights for a robust statistical analysis of results. Biomass and Bioenergy, 115, 27-34. doi:10.1016/j.biombioe.2018.04.004 | es_ES |
dc.subject.ods | 07.- Asegurar el acceso a energías asequibles, fiables, sostenibles y modernas para todos | es_ES |
dc.subject.ods | 05.- Alcanzar la igualdad entre los géneros y empoderar a todas las mujeres y niñas | es_ES |
dc.subject.ods | 03.- Garantizar una vida saludable y promover el bienestar para todos y todas en todas las edades | es_ES |
dc.subject.ods | 15.- Proteger, restaurar y promover la utilización sostenible de los ecosistemas terrestres, gestionar de manera sostenible los bosques, combatir la desertificación y detener y revertir la degradación de la tierra, y frenar la pérdida de diversidad biológica | es_ES |
dc.subject.ods | 13.- Tomar medidas urgentes para combatir el cambio climático y sus efectos | es_ES |
dc.subject.ods | 12.- Garantizar las pautas de consumo y de producción sostenibles | es_ES |
dc.subject.ods | 08.- Fomentar el crecimiento económico sostenido, inclusivo y sostenible, el empleo pleno y productivo, y el trabajo decente para todos | es_ES |
dc.subject.ods | 01.- Erradicar la pobreza en todas sus formas en todo el mundo | es_ES |