- -

Sustainable soil-compacted blocks containing blast furnace slag (BFS) activated with olive stone biomass ash (OBA)

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Sustainable soil-compacted blocks containing blast furnace slag (BFS) activated with olive stone biomass ash (OBA)

Mostrar el registro completo del ítem

Paya Bernabeu, JJ.; Monzó Balbuena, JM.; Rosello Caselles, J.; Borrachero Rosado, MV.; Font-Pérez, A.; Soriano Martinez, L. (2020). Sustainable soil-compacted blocks containing blast furnace slag (BFS) activated with olive stone biomass ash (OBA). Sustainability. 12(23):1-14. https://doi.org/10.3390/su12239824

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/172662

Ficheros en el ítem

Metadatos del ítem

Título: Sustainable soil-compacted blocks containing blast furnace slag (BFS) activated with olive stone biomass ash (OBA)
Autor: Paya Bernabeu, Jorge Juan Monzó Balbuena, José Mª Rosello Caselles, Josefa Borrachero Rosado, María Victoria Font-Pérez, Alba Soriano Martinez, Lourdes
Entidad UPV: Universitat Politècnica de València. Departamento de Ingeniería de la Construcción y de Proyectos de Ingeniería Civil - Departament d'Enginyeria de la Construcció i de Projectes d'Enginyeria Civil
Universitat Politècnica de València. Departamento de Ecosistemas Agroforestales - Departament d'Ecosistemes Agroforestals
Fecha difusión:
Resumen:
[EN] Soil stabilization using cementing materials is a well-known procedure for earth-based building blocks preparation. For the selected binding materials, innovation usually focuses on low carbon systems, many of which ...[+]
Palabras clave: Compressive strength , Microstructure , Water absorption , Soil stabilization , FESEM , Waterproofing behavior , Thermogravimetry
Derechos de uso: Reconocimiento (by)
Fuente:
Sustainability. (eissn: 2071-1050 )
DOI: 10.3390/su12239824
Editorial:
MDPI AG
Versión del editor: https://doi.org/10.3390/su12239824
Código del Proyecto:
info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/RTI2018-096121-B-C21/ES/NUEVOS ANTICUERPOS MONOCLONALES PARA LA DETECCION IN SITU DE MICOTOXINAS EN FRUTAS, CEREALES Y PRODUCTOS PROCESADOS MEDIANTE METODOS INMUNOQUIMICOS/
info:eu-repo/grantAgreement/MINECO//BIA2015-70107-R/ES/APLICACIONES DE SISTEMAS GEOPOLIMERICOS OBTENIDOS A PARTIR DE MEZCLAS DE RESIDUOS: MORTEROS,HORMIGONES Y ESTABILIZACION DE SUELOS/
Agradecimientos:
This research was funded by the Spanish Government and FEDER funds (MINECO/FEDER-Project RTI2018-09612-B-C21).
Tipo: Artículo

References

Van Damme, H., & Houben, H. (2018). Earth concrete. Stabilization revisited. Cement and Concrete Research, 114, 90-102. doi:10.1016/j.cemconres.2017.02.035

Menchaca-Ballinas, L. E., & Escalante-Garcia, J. I. (2019). Low CO2 emission cements of waste glass activated by CaO and NaOH. Journal of Cleaner Production, 239, 117992. doi:10.1016/j.jclepro.2019.117992

Basha, E. A., Hashim, R., Mahmud, H. B., & Muntohar, A. S. (2005). Stabilization of residual soil with rice husk ash and cement. Construction and Building Materials, 19(6), 448-453. doi:10.1016/j.conbuildmat.2004.08.001 [+]
Van Damme, H., & Houben, H. (2018). Earth concrete. Stabilization revisited. Cement and Concrete Research, 114, 90-102. doi:10.1016/j.cemconres.2017.02.035

Menchaca-Ballinas, L. E., & Escalante-Garcia, J. I. (2019). Low CO2 emission cements of waste glass activated by CaO and NaOH. Journal of Cleaner Production, 239, 117992. doi:10.1016/j.jclepro.2019.117992

Basha, E. A., Hashim, R., Mahmud, H. B., & Muntohar, A. S. (2005). Stabilization of residual soil with rice husk ash and cement. Construction and Building Materials, 19(6), 448-453. doi:10.1016/j.conbuildmat.2004.08.001

Rahgozar, M. A., Saberian, M., & Li, J. (2018). Soil stabilization with non-conventional eco-friendly agricultural waste materials: An experimental study. Transportation Geotechnics, 14, 52-60. doi:10.1016/j.trgeo.2017.09.004

Sisol, M., Kudelas, D., Marcin, M., Holub, T., & Varga, P. (2019). Statistical Evaluation of Mechanical Properties of Slag Based Alkali-Activated Material. Sustainability, 11(21), 5935. doi:10.3390/su11215935

Mellado, A., Catalán, C., Bouzón, N., Borrachero, M. V., Monzó, J. M., & Payá, J. (2014). Carbon footprint of geopolymeric mortar: study of the contribution of the alkaline activating solution and assessment of an alternative route. RSC Adv., 4(45), 23846-23852. doi:10.1039/c4ra03375b

Tchakouté, H. K., Rüscher, C. H., Kong, S., & Ranjbar, N. (2016). Synthesis of sodium waterglass from white rice husk ash as an activator to produce metakaolin-based geopolymer cements. Journal of Building Engineering, 6, 252-261. doi:10.1016/j.jobe.2016.04.007

Tchakouté, H. K., Rüscher, C. H., Hinsch, M., Djobo, J. N. Y., Kamseu, E., & Leonelli, C. (2017). Utilization of sodium waterglass from sugar cane bagasse ash as a new alternative hardener for producing metakaolin-based geopolymer cement. Geochemistry, 77(2), 257-266. doi:10.1016/j.chemer.2017.04.003

Moraes, J. C. B., Font, A., Soriano, L., Akasaki, J. L., Tashima, M. M., Monzó, J., … Payá, J. (2018). New use of sugar cane straw ash in alkali-activated materials: A silica source for the preparation of the alkaline activator. Construction and Building Materials, 171, 611-621. doi:10.1016/j.conbuildmat.2018.03.230

Font, A., Soriano, L., Reig, L., Tashima, M. M., Borrachero, M. V., Monzó, J., & Payá, J. (2018). Use of residual diatomaceous earth as a silica source in geopolymer production. Materials Letters, 223, 10-13. doi:10.1016/j.matlet.2018.04.010

Samarakoon, M. H., Ranjith, P. G., Duan, W. H., & De Silva, V. R. S. (2020). Properties of one-part fly ash/slag-based binders activated by thermally-treated waste glass/NaOH blends: A comparative study. Cement and Concrete Composites, 112, 103679. doi:10.1016/j.cemconcomp.2020.103679

Zhao, X., Liu, C., Wang, L., Zuo, L., Zhu, Q., & Ma, W. (2019). Physical and mechanical properties and micro characteristics of fly ash-based geopolymers incorporating soda residue. Cement and Concrete Composites, 98, 125-136. doi:10.1016/j.cemconcomp.2019.02.009

Bilginer, A., Canbek, O., & Turhan Erdoğan, S. (2020). Activation of Blast Furnace Slag with Soda Production Waste. Journal of Materials in Civil Engineering, 32(1), 04019316. doi:10.1061/(asce)mt.1943-5533.0002987

Ban, C. C., Ken, P. W., & Ramli, M. (2017). Mechanical and Durability Performance of Novel Self-activating Geopolymer Mortars. Procedia Engineering, 171, 564-571. doi:10.1016/j.proeng.2017.01.374

Peys, A., Rahier, H., & Pontikes, Y. (2016). Potassium-rich biomass ashes as activators in metakaolin-based inorganic polymers. Applied Clay Science, 119, 401-409. doi:10.1016/j.clay.2015.11.003

Soriano, L., Font, A., Tashima, M. M., Monzó, J., Borrachero, M. V., & Payá, J. (2020). One-part blast furnace slag mortars activated with almond-shell biomass ash: A new 100% waste-based material. Materials Letters, 272, 127882. doi:10.1016/j.matlet.2020.127882

Abdullah, H. H., Shahin, M. A., & Walske, M. L. (2020). Review of Fly-Ash-Based Geopolymers for Soil Stabilisation with Special Reference to Clay. Geosciences, 10(7), 249. doi:10.3390/geosciences10070249

Cristelo, N., Miranda, T., Oliveira, D. V., Rosa, I., Soares, E., Coelho, P., & Fernandes, L. (2015). Assessing the production of jet mix columns using alkali activated waste based on mechanical and financial performance and CO2 (eq) emissions. Journal of Cleaner Production, 102, 447-460. doi:10.1016/j.jclepro.2015.04.102

Font, A., Soriano, L., Moraes, J. C. B., Tashima, M. M., Monzó, J., Borrachero, M. V., & Payá, J. (2017). A 100% waste-based alkali-activated material by using olive-stone biomass ash (OBA) and blast furnace slag (BFS). Materials Letters, 203, 46-49. doi:10.1016/j.matlet.2017.05.129

De Moraes Pinheiro, S. M., Font, A., Soriano, L., Tashima, M. M., Monzó, J., Borrachero, M. V., & Payá, J. (2018). Olive-stone biomass ash (OBA): An alternative alkaline source for the blast furnace slag activation. Construction and Building Materials, 178, 327-338. doi:10.1016/j.conbuildmat.2018.05.157

Alonso, M. M., Gascó, C., Morales, M. M., Suárez-Navarro, J. A., Zamorano, M., & Puertas, F. (2019). Olive biomass ash as an alternative activator in geopolymer formation: A study of strength, radiology and leaching behaviour. Cement and Concrete Composites, 104, 103384. doi:10.1016/j.cemconcomp.2019.103384

Vossen, P. (2007). Olive Oil: History, Production, and Characteristics of the World’s Classic Oils. HortScience, 42(5), 1093-1100. doi:10.21273/hortsci.42.5.1093

Roig, A., Cayuela, M. L., & Sánchez-Monedero, M. A. (2006). An overview on olive mill wastes and their valorisation methods. Waste Management, 26(9), 960-969. doi:10.1016/j.wasman.2005.07.024

García Martín, J. F., Cuevas, M., Feng, C.-H., Álvarez Mateos, P., Torres García, M., & Sánchez, S. (2020). Energetic Valorisation of Olive Biomass: Olive-Tree Pruning, Olive Stones and Pomaces. Processes, 8(5), 511. doi:10.3390/pr8050511

Cosa, J., Soriano, L., Borrachero, M. V., Payá, J., & Monzó, J. M. (2019). Stabilization of soil by means alternative alkali‐activated cement prepared with spent FCC catalyst. International Journal of Applied Ceramic Technology, 17(1), 190-196. doi:10.1111/ijac.13377

Xing, J., Zhao, Y., Qiu, J., & Sun, X. (2019). Microstructural and Mechanical Properties of Alkali Activated Materials from Two Types of Blast Furnace Slags. Materials, 12(13), 2089. doi:10.3390/ma12132089

Burciaga-Díaz, O., & Escalante-García, J. I. (2013). Structure, Mechanisms of Reaction, and Strength of an Alkali-Activated Blast-Furnace Slag. Journal of the American Ceramic Society, 96(12), 3939-3948. doi:10.1111/jace.12620

Gunasekaran, S., & Anbalagan, G. (2007). Thermal decomposition of natural dolomite. Bulletin of Materials Science, 30(4), 339-344. doi:10.1007/s12034-007-0056-z

Walkley, B., San Nicolas, R., Sani, M.-A., Rees, G. J., Hanna, J. V., van Deventer, J. S. J., & Provis, J. L. (2016). Phase evolution of C-(N)-A-S-H/N-A-S-H gel blends investigated via alkali-activation of synthetic calcium aluminosilicate precursors. Cement and Concrete Research, 89, 120-135. doi:10.1016/j.cemconres.2016.08.010

Puertas, F., Palacios, M., Manzano, H., Dolado, J. S., Rico, A., & Rodríguez, J. (2011). A model for the C-A-S-H gel formed in alkali-activated slag cements. Journal of the European Ceramic Society, 31(12), 2043-2056. doi:10.1016/j.jeurceramsoc.2011.04.036

Ortega-Zavala, D. E., Santana-Carrillo, J. L., Burciaga-Díaz, O., & Escalante-García, J. I. (2019). An initial study on alkali activated limestone binders. Cement and Concrete Research, 120, 267-278. doi:10.1016/j.cemconres.2019.04.002

Guettala, A., Abibsi, A., & Houari, H. (2006). Durability study of stabilized earth concrete under both laboratory and climatic conditions exposure. Construction and Building Materials, 20(3), 119-127. doi:10.1016/j.conbuildmat.2005.02.001

Salim, R., Ndambuki, J., & Adedokun, D. (2014). Improving the Bearing Strength of Sandy Loam Soil Compressed Earth Block Bricks Using Sugercane Bagasse Ash. Sustainability, 6(6), 3686-3696. doi:10.3390/su6063686

Font, A., Soriano, L., Tashima, M. M., Monzó, J., Borrachero, M. V., & Payá, J. (2020). One-part eco-cellular concrete for the precast industry: Functional features and life cycle assessment. Journal of Cleaner Production, 269, 122203. doi:10.1016/j.jclepro.2020.122203

Luukkonen, T., Abdollahnejad, Z., Yliniemi, J., Kinnunen, P., & Illikainen, M. (2018). One-part alkali-activated materials: A review. Cement and Concrete Research, 103, 21-34. doi:10.1016/j.cemconres.2017.10.001

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem