Mostrar el registro sencillo del ítem
dc.contributor.author | Paya Bernabeu, Jorge Juan | es_ES |
dc.contributor.author | Monzó Balbuena, José Mª | es_ES |
dc.contributor.author | Rosello Caselles, Josefa | es_ES |
dc.contributor.author | Borrachero Rosado, María Victoria | es_ES |
dc.contributor.author | Font-Pérez, Alba | es_ES |
dc.contributor.author | Soriano Martinez, Lourdes | es_ES |
dc.date.accessioned | 2021-09-17T03:31:03Z | |
dc.date.available | 2021-09-17T03:31:03Z | |
dc.date.issued | 2020-12 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/172662 | |
dc.description.abstract | [EN] Soil stabilization using cementing materials is a well-known procedure for earth-based building blocks preparation. For the selected binding materials, innovation usually focuses on low carbon systems, many of which are based on alkaline activation. In the present paper, blast furnace slag (BFS) is used as a mineral precursor, and the innovative alkali activator was olive stone biomass ash (OBA). This means that the most important component in CO2 emissions terms, which is the alkali activator, has been replaced with a greener alternative: OBA. The OBA/BFS mixture was used to prepare compacted dolomitic soil blocks. These specimens were mechanically characterized by compression, and water strength coefficient and water absorption were assessed. The microstructure of blocks and the formation of cementing hydrates were analyzed by field emission scanning electron microscopy and thermogravimetry, respectively. The final compressive strength of the 120-day cured blocks was 27.8 MPa. It was concluded that OBA is a sustainable alkali activator alternative for producing BFS-stabilized soil-compacted blocks: CO2 emissions were 3.3 kgCO(2)/ton of stabilized soil, which is 96% less than that for ordinary Portland cement (OPC) stabilization. | es_ES |
dc.description.sponsorship | This research was funded by the Spanish Government and FEDER funds (MINECO/FEDER-Project RTI2018-09612-B-C21). | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | MDPI AG | es_ES |
dc.relation.ispartof | Sustainability | es_ES |
dc.rights | Reconocimiento (by) | es_ES |
dc.subject | Compressive strength | es_ES |
dc.subject | Microstructure | es_ES |
dc.subject | Water absorption | es_ES |
dc.subject | Soil stabilization | es_ES |
dc.subject | FESEM | es_ES |
dc.subject | Waterproofing behavior | es_ES |
dc.subject | Thermogravimetry | es_ES |
dc.subject.classification | INGENIERIA DE LA CONSTRUCCION | es_ES |
dc.title | Sustainable soil-compacted blocks containing blast furnace slag (BFS) activated with olive stone biomass ash (OBA) | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.3390/su12239824 | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/RTI2018-096121-B-C21/ES/NUEVOS ANTICUERPOS MONOCLONALES PARA LA DETECCION IN SITU DE MICOTOXINAS EN FRUTAS, CEREALES Y PRODUCTOS PROCESADOS MEDIANTE METODOS INMUNOQUIMICOS/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MINECO//BIA2015-70107-R/ES/APLICACIONES DE SISTEMAS GEOPOLIMERICOS OBTENIDOS A PARTIR DE MEZCLAS DE RESIDUOS: MORTEROS,HORMIGONES Y ESTABILIZACION DE SUELOS/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Ingeniería de la Construcción y de Proyectos de Ingeniería Civil - Departament d'Enginyeria de la Construcció i de Projectes d'Enginyeria Civil | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Ecosistemas Agroforestales - Departament d'Ecosistemes Agroforestals | es_ES |
dc.description.bibliographicCitation | Paya Bernabeu, JJ.; Monzó Balbuena, JM.; Rosello Caselles, J.; Borrachero Rosado, MV.; Font-Pérez, A.; Soriano Martinez, L. (2020). Sustainable soil-compacted blocks containing blast furnace slag (BFS) activated with olive stone biomass ash (OBA). Sustainability. 12(23):1-14. https://doi.org/10.3390/su12239824 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.3390/su12239824 | es_ES |
dc.description.upvformatpinicio | 1 | es_ES |
dc.description.upvformatpfin | 14 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 12 | es_ES |
dc.description.issue | 23 | es_ES |
dc.identifier.eissn | 2071-1050 | es_ES |
dc.relation.pasarela | S\430893 | es_ES |
dc.contributor.funder | European Regional Development Fund | es_ES |
dc.contributor.funder | Ministerio de Economía y Competitividad | es_ES |
dc.contributor.funder | Agencia Estatal de Investigación | es_ES |
dc.description.references | Van Damme, H., & Houben, H. (2018). Earth concrete. Stabilization revisited. Cement and Concrete Research, 114, 90-102. doi:10.1016/j.cemconres.2017.02.035 | es_ES |
dc.description.references | Menchaca-Ballinas, L. E., & Escalante-Garcia, J. I. (2019). Low CO2 emission cements of waste glass activated by CaO and NaOH. Journal of Cleaner Production, 239, 117992. doi:10.1016/j.jclepro.2019.117992 | es_ES |
dc.description.references | Basha, E. A., Hashim, R., Mahmud, H. B., & Muntohar, A. S. (2005). Stabilization of residual soil with rice husk ash and cement. Construction and Building Materials, 19(6), 448-453. doi:10.1016/j.conbuildmat.2004.08.001 | es_ES |
dc.description.references | Rahgozar, M. A., Saberian, M., & Li, J. (2018). Soil stabilization with non-conventional eco-friendly agricultural waste materials: An experimental study. Transportation Geotechnics, 14, 52-60. doi:10.1016/j.trgeo.2017.09.004 | es_ES |
dc.description.references | Sisol, M., Kudelas, D., Marcin, M., Holub, T., & Varga, P. (2019). Statistical Evaluation of Mechanical Properties of Slag Based Alkali-Activated Material. Sustainability, 11(21), 5935. doi:10.3390/su11215935 | es_ES |
dc.description.references | Mellado, A., Catalán, C., Bouzón, N., Borrachero, M. V., Monzó, J. M., & Payá, J. (2014). Carbon footprint of geopolymeric mortar: study of the contribution of the alkaline activating solution and assessment of an alternative route. RSC Adv., 4(45), 23846-23852. doi:10.1039/c4ra03375b | es_ES |
dc.description.references | Tchakouté, H. K., Rüscher, C. H., Kong, S., & Ranjbar, N. (2016). Synthesis of sodium waterglass from white rice husk ash as an activator to produce metakaolin-based geopolymer cements. Journal of Building Engineering, 6, 252-261. doi:10.1016/j.jobe.2016.04.007 | es_ES |
dc.description.references | Tchakouté, H. K., Rüscher, C. H., Hinsch, M., Djobo, J. N. Y., Kamseu, E., & Leonelli, C. (2017). Utilization of sodium waterglass from sugar cane bagasse ash as a new alternative hardener for producing metakaolin-based geopolymer cement. Geochemistry, 77(2), 257-266. doi:10.1016/j.chemer.2017.04.003 | es_ES |
dc.description.references | Moraes, J. C. B., Font, A., Soriano, L., Akasaki, J. L., Tashima, M. M., Monzó, J., … Payá, J. (2018). New use of sugar cane straw ash in alkali-activated materials: A silica source for the preparation of the alkaline activator. Construction and Building Materials, 171, 611-621. doi:10.1016/j.conbuildmat.2018.03.230 | es_ES |
dc.description.references | Font, A., Soriano, L., Reig, L., Tashima, M. M., Borrachero, M. V., Monzó, J., & Payá, J. (2018). Use of residual diatomaceous earth as a silica source in geopolymer production. Materials Letters, 223, 10-13. doi:10.1016/j.matlet.2018.04.010 | es_ES |
dc.description.references | Samarakoon, M. H., Ranjith, P. G., Duan, W. H., & De Silva, V. R. S. (2020). Properties of one-part fly ash/slag-based binders activated by thermally-treated waste glass/NaOH blends: A comparative study. Cement and Concrete Composites, 112, 103679. doi:10.1016/j.cemconcomp.2020.103679 | es_ES |
dc.description.references | Zhao, X., Liu, C., Wang, L., Zuo, L., Zhu, Q., & Ma, W. (2019). Physical and mechanical properties and micro characteristics of fly ash-based geopolymers incorporating soda residue. Cement and Concrete Composites, 98, 125-136. doi:10.1016/j.cemconcomp.2019.02.009 | es_ES |
dc.description.references | Bilginer, A., Canbek, O., & Turhan Erdoğan, S. (2020). Activation of Blast Furnace Slag with Soda Production Waste. Journal of Materials in Civil Engineering, 32(1), 04019316. doi:10.1061/(asce)mt.1943-5533.0002987 | es_ES |
dc.description.references | Ban, C. C., Ken, P. W., & Ramli, M. (2017). Mechanical and Durability Performance of Novel Self-activating Geopolymer Mortars. Procedia Engineering, 171, 564-571. doi:10.1016/j.proeng.2017.01.374 | es_ES |
dc.description.references | Peys, A., Rahier, H., & Pontikes, Y. (2016). Potassium-rich biomass ashes as activators in metakaolin-based inorganic polymers. Applied Clay Science, 119, 401-409. doi:10.1016/j.clay.2015.11.003 | es_ES |
dc.description.references | Soriano, L., Font, A., Tashima, M. M., Monzó, J., Borrachero, M. V., & Payá, J. (2020). One-part blast furnace slag mortars activated with almond-shell biomass ash: A new 100% waste-based material. Materials Letters, 272, 127882. doi:10.1016/j.matlet.2020.127882 | es_ES |
dc.description.references | Abdullah, H. H., Shahin, M. A., & Walske, M. L. (2020). Review of Fly-Ash-Based Geopolymers for Soil Stabilisation with Special Reference to Clay. Geosciences, 10(7), 249. doi:10.3390/geosciences10070249 | es_ES |
dc.description.references | Cristelo, N., Miranda, T., Oliveira, D. V., Rosa, I., Soares, E., Coelho, P., & Fernandes, L. (2015). Assessing the production of jet mix columns using alkali activated waste based on mechanical and financial performance and CO2 (eq) emissions. Journal of Cleaner Production, 102, 447-460. doi:10.1016/j.jclepro.2015.04.102 | es_ES |
dc.description.references | Font, A., Soriano, L., Moraes, J. C. B., Tashima, M. M., Monzó, J., Borrachero, M. V., & Payá, J. (2017). A 100% waste-based alkali-activated material by using olive-stone biomass ash (OBA) and blast furnace slag (BFS). Materials Letters, 203, 46-49. doi:10.1016/j.matlet.2017.05.129 | es_ES |
dc.description.references | De Moraes Pinheiro, S. M., Font, A., Soriano, L., Tashima, M. M., Monzó, J., Borrachero, M. V., & Payá, J. (2018). Olive-stone biomass ash (OBA): An alternative alkaline source for the blast furnace slag activation. Construction and Building Materials, 178, 327-338. doi:10.1016/j.conbuildmat.2018.05.157 | es_ES |
dc.description.references | Alonso, M. M., Gascó, C., Morales, M. M., Suárez-Navarro, J. A., Zamorano, M., & Puertas, F. (2019). Olive biomass ash as an alternative activator in geopolymer formation: A study of strength, radiology and leaching behaviour. Cement and Concrete Composites, 104, 103384. doi:10.1016/j.cemconcomp.2019.103384 | es_ES |
dc.description.references | Vossen, P. (2007). Olive Oil: History, Production, and Characteristics of the World’s Classic Oils. HortScience, 42(5), 1093-1100. doi:10.21273/hortsci.42.5.1093 | es_ES |
dc.description.references | Roig, A., Cayuela, M. L., & Sánchez-Monedero, M. A. (2006). An overview on olive mill wastes and their valorisation methods. Waste Management, 26(9), 960-969. doi:10.1016/j.wasman.2005.07.024 | es_ES |
dc.description.references | García Martín, J. F., Cuevas, M., Feng, C.-H., Álvarez Mateos, P., Torres García, M., & Sánchez, S. (2020). Energetic Valorisation of Olive Biomass: Olive-Tree Pruning, Olive Stones and Pomaces. Processes, 8(5), 511. doi:10.3390/pr8050511 | es_ES |
dc.description.references | Cosa, J., Soriano, L., Borrachero, M. V., Payá, J., & Monzó, J. M. (2019). Stabilization of soil by means alternative alkali‐activated cement prepared with spent FCC catalyst. International Journal of Applied Ceramic Technology, 17(1), 190-196. doi:10.1111/ijac.13377 | es_ES |
dc.description.references | Xing, J., Zhao, Y., Qiu, J., & Sun, X. (2019). Microstructural and Mechanical Properties of Alkali Activated Materials from Two Types of Blast Furnace Slags. Materials, 12(13), 2089. doi:10.3390/ma12132089 | es_ES |
dc.description.references | Burciaga-Díaz, O., & Escalante-García, J. I. (2013). Structure, Mechanisms of Reaction, and Strength of an Alkali-Activated Blast-Furnace Slag. Journal of the American Ceramic Society, 96(12), 3939-3948. doi:10.1111/jace.12620 | es_ES |
dc.description.references | Gunasekaran, S., & Anbalagan, G. (2007). Thermal decomposition of natural dolomite. Bulletin of Materials Science, 30(4), 339-344. doi:10.1007/s12034-007-0056-z | es_ES |
dc.description.references | Walkley, B., San Nicolas, R., Sani, M.-A., Rees, G. J., Hanna, J. V., van Deventer, J. S. J., & Provis, J. L. (2016). Phase evolution of C-(N)-A-S-H/N-A-S-H gel blends investigated via alkali-activation of synthetic calcium aluminosilicate precursors. Cement and Concrete Research, 89, 120-135. doi:10.1016/j.cemconres.2016.08.010 | es_ES |
dc.description.references | Puertas, F., Palacios, M., Manzano, H., Dolado, J. S., Rico, A., & Rodríguez, J. (2011). A model for the C-A-S-H gel formed in alkali-activated slag cements. Journal of the European Ceramic Society, 31(12), 2043-2056. doi:10.1016/j.jeurceramsoc.2011.04.036 | es_ES |
dc.description.references | Ortega-Zavala, D. E., Santana-Carrillo, J. L., Burciaga-Díaz, O., & Escalante-García, J. I. (2019). An initial study on alkali activated limestone binders. Cement and Concrete Research, 120, 267-278. doi:10.1016/j.cemconres.2019.04.002 | es_ES |
dc.description.references | Guettala, A., Abibsi, A., & Houari, H. (2006). Durability study of stabilized earth concrete under both laboratory and climatic conditions exposure. Construction and Building Materials, 20(3), 119-127. doi:10.1016/j.conbuildmat.2005.02.001 | es_ES |
dc.description.references | Salim, R., Ndambuki, J., & Adedokun, D. (2014). Improving the Bearing Strength of Sandy Loam Soil Compressed Earth Block Bricks Using Sugercane Bagasse Ash. Sustainability, 6(6), 3686-3696. doi:10.3390/su6063686 | es_ES |
dc.description.references | Font, A., Soriano, L., Tashima, M. M., Monzó, J., Borrachero, M. V., & Payá, J. (2020). One-part eco-cellular concrete for the precast industry: Functional features and life cycle assessment. Journal of Cleaner Production, 269, 122203. doi:10.1016/j.jclepro.2020.122203 | es_ES |
dc.description.references | Luukkonen, T., Abdollahnejad, Z., Yliniemi, J., Kinnunen, P., & Illikainen, M. (2018). One-part alkali-activated materials: A review. Cement and Concrete Research, 103, 21-34. doi:10.1016/j.cemconres.2017.10.001 | es_ES |
dc.subject.ods | 09.- Desarrollar infraestructuras resilientes, promover la industrialización inclusiva y sostenible, y fomentar la innovación | es_ES |
dc.subject.ods | 11.- Conseguir que las ciudades y los asentamientos humanos sean inclusivos, seguros, resilientes y sostenibles | es_ES |