- -

Sustainable soil-compacted blocks containing blast furnace slag (BFS) activated with olive stone biomass ash (OBA)

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Sustainable soil-compacted blocks containing blast furnace slag (BFS) activated with olive stone biomass ash (OBA)

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Paya Bernabeu, Jorge Juan es_ES
dc.contributor.author Monzó Balbuena, José Mª es_ES
dc.contributor.author Rosello Caselles, Josefa es_ES
dc.contributor.author Borrachero Rosado, María Victoria es_ES
dc.contributor.author Font-Pérez, Alba es_ES
dc.contributor.author Soriano Martinez, Lourdes es_ES
dc.date.accessioned 2021-09-17T03:31:03Z
dc.date.available 2021-09-17T03:31:03Z
dc.date.issued 2020-12 es_ES
dc.identifier.uri http://hdl.handle.net/10251/172662
dc.description.abstract [EN] Soil stabilization using cementing materials is a well-known procedure for earth-based building blocks preparation. For the selected binding materials, innovation usually focuses on low carbon systems, many of which are based on alkaline activation. In the present paper, blast furnace slag (BFS) is used as a mineral precursor, and the innovative alkali activator was olive stone biomass ash (OBA). This means that the most important component in CO2 emissions terms, which is the alkali activator, has been replaced with a greener alternative: OBA. The OBA/BFS mixture was used to prepare compacted dolomitic soil blocks. These specimens were mechanically characterized by compression, and water strength coefficient and water absorption were assessed. The microstructure of blocks and the formation of cementing hydrates were analyzed by field emission scanning electron microscopy and thermogravimetry, respectively. The final compressive strength of the 120-day cured blocks was 27.8 MPa. It was concluded that OBA is a sustainable alkali activator alternative for producing BFS-stabilized soil-compacted blocks: CO2 emissions were 3.3 kgCO(2)/ton of stabilized soil, which is 96% less than that for ordinary Portland cement (OPC) stabilization. es_ES
dc.description.sponsorship This research was funded by the Spanish Government and FEDER funds (MINECO/FEDER-Project RTI2018-09612-B-C21). es_ES
dc.language Inglés es_ES
dc.publisher MDPI AG es_ES
dc.relation.ispartof Sustainability es_ES
dc.rights Reconocimiento (by) es_ES
dc.subject Compressive strength es_ES
dc.subject Microstructure es_ES
dc.subject Water absorption es_ES
dc.subject Soil stabilization es_ES
dc.subject FESEM es_ES
dc.subject Waterproofing behavior es_ES
dc.subject Thermogravimetry es_ES
dc.subject.classification INGENIERIA DE LA CONSTRUCCION es_ES
dc.title Sustainable soil-compacted blocks containing blast furnace slag (BFS) activated with olive stone biomass ash (OBA) es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.3390/su12239824 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/RTI2018-096121-B-C21/ES/NUEVOS ANTICUERPOS MONOCLONALES PARA LA DETECCION IN SITU DE MICOTOXINAS EN FRUTAS, CEREALES Y PRODUCTOS PROCESADOS MEDIANTE METODOS INMUNOQUIMICOS/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//BIA2015-70107-R/ES/APLICACIONES DE SISTEMAS GEOPOLIMERICOS OBTENIDOS A PARTIR DE MEZCLAS DE RESIDUOS: MORTEROS,HORMIGONES Y ESTABILIZACION DE SUELOS/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Ingeniería de la Construcción y de Proyectos de Ingeniería Civil - Departament d'Enginyeria de la Construcció i de Projectes d'Enginyeria Civil es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Ecosistemas Agroforestales - Departament d'Ecosistemes Agroforestals es_ES
dc.description.bibliographicCitation Paya Bernabeu, JJ.; Monzó Balbuena, JM.; Rosello Caselles, J.; Borrachero Rosado, MV.; Font-Pérez, A.; Soriano Martinez, L. (2020). Sustainable soil-compacted blocks containing blast furnace slag (BFS) activated with olive stone biomass ash (OBA). Sustainability. 12(23):1-14. https://doi.org/10.3390/su12239824 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.3390/su12239824 es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 14 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 12 es_ES
dc.description.issue 23 es_ES
dc.identifier.eissn 2071-1050 es_ES
dc.relation.pasarela S\430893 es_ES
dc.contributor.funder European Regional Development Fund es_ES
dc.contributor.funder Ministerio de Economía y Competitividad es_ES
dc.contributor.funder Agencia Estatal de Investigación es_ES
dc.description.references Van Damme, H., & Houben, H. (2018). Earth concrete. Stabilization revisited. Cement and Concrete Research, 114, 90-102. doi:10.1016/j.cemconres.2017.02.035 es_ES
dc.description.references Menchaca-Ballinas, L. E., & Escalante-Garcia, J. I. (2019). Low CO2 emission cements of waste glass activated by CaO and NaOH. Journal of Cleaner Production, 239, 117992. doi:10.1016/j.jclepro.2019.117992 es_ES
dc.description.references Basha, E. A., Hashim, R., Mahmud, H. B., & Muntohar, A. S. (2005). Stabilization of residual soil with rice husk ash and cement. Construction and Building Materials, 19(6), 448-453. doi:10.1016/j.conbuildmat.2004.08.001 es_ES
dc.description.references Rahgozar, M. A., Saberian, M., & Li, J. (2018). Soil stabilization with non-conventional eco-friendly agricultural waste materials: An experimental study. Transportation Geotechnics, 14, 52-60. doi:10.1016/j.trgeo.2017.09.004 es_ES
dc.description.references Sisol, M., Kudelas, D., Marcin, M., Holub, T., & Varga, P. (2019). Statistical Evaluation of Mechanical Properties of Slag Based Alkali-Activated Material. Sustainability, 11(21), 5935. doi:10.3390/su11215935 es_ES
dc.description.references Mellado, A., Catalán, C., Bouzón, N., Borrachero, M. V., Monzó, J. M., & Payá, J. (2014). Carbon footprint of geopolymeric mortar: study of the contribution of the alkaline activating solution and assessment of an alternative route. RSC Adv., 4(45), 23846-23852. doi:10.1039/c4ra03375b es_ES
dc.description.references Tchakouté, H. K., Rüscher, C. H., Kong, S., & Ranjbar, N. (2016). Synthesis of sodium waterglass from white rice husk ash as an activator to produce metakaolin-based geopolymer cements. Journal of Building Engineering, 6, 252-261. doi:10.1016/j.jobe.2016.04.007 es_ES
dc.description.references Tchakouté, H. K., Rüscher, C. H., Hinsch, M., Djobo, J. N. Y., Kamseu, E., & Leonelli, C. (2017). Utilization of sodium waterglass from sugar cane bagasse ash as a new alternative hardener for producing metakaolin-based geopolymer cement. Geochemistry, 77(2), 257-266. doi:10.1016/j.chemer.2017.04.003 es_ES
dc.description.references Moraes, J. C. B., Font, A., Soriano, L., Akasaki, J. L., Tashima, M. M., Monzó, J., … Payá, J. (2018). New use of sugar cane straw ash in alkali-activated materials: A silica source for the preparation of the alkaline activator. Construction and Building Materials, 171, 611-621. doi:10.1016/j.conbuildmat.2018.03.230 es_ES
dc.description.references Font, A., Soriano, L., Reig, L., Tashima, M. M., Borrachero, M. V., Monzó, J., & Payá, J. (2018). Use of residual diatomaceous earth as a silica source in geopolymer production. Materials Letters, 223, 10-13. doi:10.1016/j.matlet.2018.04.010 es_ES
dc.description.references Samarakoon, M. H., Ranjith, P. G., Duan, W. H., & De Silva, V. R. S. (2020). Properties of one-part fly ash/slag-based binders activated by thermally-treated waste glass/NaOH blends: A comparative study. Cement and Concrete Composites, 112, 103679. doi:10.1016/j.cemconcomp.2020.103679 es_ES
dc.description.references Zhao, X., Liu, C., Wang, L., Zuo, L., Zhu, Q., & Ma, W. (2019). Physical and mechanical properties and micro characteristics of fly ash-based geopolymers incorporating soda residue. Cement and Concrete Composites, 98, 125-136. doi:10.1016/j.cemconcomp.2019.02.009 es_ES
dc.description.references Bilginer, A., Canbek, O., & Turhan Erdoğan, S. (2020). Activation of Blast Furnace Slag with Soda Production Waste. Journal of Materials in Civil Engineering, 32(1), 04019316. doi:10.1061/(asce)mt.1943-5533.0002987 es_ES
dc.description.references Ban, C. C., Ken, P. W., & Ramli, M. (2017). Mechanical and Durability Performance of Novel Self-activating Geopolymer Mortars. Procedia Engineering, 171, 564-571. doi:10.1016/j.proeng.2017.01.374 es_ES
dc.description.references Peys, A., Rahier, H., & Pontikes, Y. (2016). Potassium-rich biomass ashes as activators in metakaolin-based inorganic polymers. Applied Clay Science, 119, 401-409. doi:10.1016/j.clay.2015.11.003 es_ES
dc.description.references Soriano, L., Font, A., Tashima, M. M., Monzó, J., Borrachero, M. V., & Payá, J. (2020). One-part blast furnace slag mortars activated with almond-shell biomass ash: A new 100% waste-based material. Materials Letters, 272, 127882. doi:10.1016/j.matlet.2020.127882 es_ES
dc.description.references Abdullah, H. H., Shahin, M. A., & Walske, M. L. (2020). Review of Fly-Ash-Based Geopolymers for Soil Stabilisation with Special Reference to Clay. Geosciences, 10(7), 249. doi:10.3390/geosciences10070249 es_ES
dc.description.references Cristelo, N., Miranda, T., Oliveira, D. V., Rosa, I., Soares, E., Coelho, P., & Fernandes, L. (2015). Assessing the production of jet mix columns using alkali activated waste based on mechanical and financial performance and CO2 (eq) emissions. Journal of Cleaner Production, 102, 447-460. doi:10.1016/j.jclepro.2015.04.102 es_ES
dc.description.references Font, A., Soriano, L., Moraes, J. C. B., Tashima, M. M., Monzó, J., Borrachero, M. V., & Payá, J. (2017). A 100% waste-based alkali-activated material by using olive-stone biomass ash (OBA) and blast furnace slag (BFS). Materials Letters, 203, 46-49. doi:10.1016/j.matlet.2017.05.129 es_ES
dc.description.references De Moraes Pinheiro, S. M., Font, A., Soriano, L., Tashima, M. M., Monzó, J., Borrachero, M. V., & Payá, J. (2018). Olive-stone biomass ash (OBA): An alternative alkaline source for the blast furnace slag activation. Construction and Building Materials, 178, 327-338. doi:10.1016/j.conbuildmat.2018.05.157 es_ES
dc.description.references Alonso, M. M., Gascó, C., Morales, M. M., Suárez-Navarro, J. A., Zamorano, M., & Puertas, F. (2019). Olive biomass ash as an alternative activator in geopolymer formation: A study of strength, radiology and leaching behaviour. Cement and Concrete Composites, 104, 103384. doi:10.1016/j.cemconcomp.2019.103384 es_ES
dc.description.references Vossen, P. (2007). Olive Oil: History, Production, and Characteristics of the World’s Classic Oils. HortScience, 42(5), 1093-1100. doi:10.21273/hortsci.42.5.1093 es_ES
dc.description.references Roig, A., Cayuela, M. L., & Sánchez-Monedero, M. A. (2006). An overview on olive mill wastes and their valorisation methods. Waste Management, 26(9), 960-969. doi:10.1016/j.wasman.2005.07.024 es_ES
dc.description.references García Martín, J. F., Cuevas, M., Feng, C.-H., Álvarez Mateos, P., Torres García, M., & Sánchez, S. (2020). Energetic Valorisation of Olive Biomass: Olive-Tree Pruning, Olive Stones and Pomaces. Processes, 8(5), 511. doi:10.3390/pr8050511 es_ES
dc.description.references Cosa, J., Soriano, L., Borrachero, M. V., Payá, J., & Monzó, J. M. (2019). Stabilization of soil by means alternative alkali‐activated cement prepared with spent FCC catalyst. International Journal of Applied Ceramic Technology, 17(1), 190-196. doi:10.1111/ijac.13377 es_ES
dc.description.references Xing, J., Zhao, Y., Qiu, J., & Sun, X. (2019). Microstructural and Mechanical Properties of Alkali Activated Materials from Two Types of Blast Furnace Slags. Materials, 12(13), 2089. doi:10.3390/ma12132089 es_ES
dc.description.references Burciaga-Díaz, O., & Escalante-García, J. I. (2013). Structure, Mechanisms of Reaction, and Strength of an Alkali-Activated Blast-Furnace Slag. Journal of the American Ceramic Society, 96(12), 3939-3948. doi:10.1111/jace.12620 es_ES
dc.description.references Gunasekaran, S., & Anbalagan, G. (2007). Thermal decomposition of natural dolomite. Bulletin of Materials Science, 30(4), 339-344. doi:10.1007/s12034-007-0056-z es_ES
dc.description.references Walkley, B., San Nicolas, R., Sani, M.-A., Rees, G. J., Hanna, J. V., van Deventer, J. S. J., & Provis, J. L. (2016). Phase evolution of C-(N)-A-S-H/N-A-S-H gel blends investigated via alkali-activation of synthetic calcium aluminosilicate precursors. Cement and Concrete Research, 89, 120-135. doi:10.1016/j.cemconres.2016.08.010 es_ES
dc.description.references Puertas, F., Palacios, M., Manzano, H., Dolado, J. S., Rico, A., & Rodríguez, J. (2011). A model for the C-A-S-H gel formed in alkali-activated slag cements. Journal of the European Ceramic Society, 31(12), 2043-2056. doi:10.1016/j.jeurceramsoc.2011.04.036 es_ES
dc.description.references Ortega-Zavala, D. E., Santana-Carrillo, J. L., Burciaga-Díaz, O., & Escalante-García, J. I. (2019). An initial study on alkali activated limestone binders. Cement and Concrete Research, 120, 267-278. doi:10.1016/j.cemconres.2019.04.002 es_ES
dc.description.references Guettala, A., Abibsi, A., & Houari, H. (2006). Durability study of stabilized earth concrete under both laboratory and climatic conditions exposure. Construction and Building Materials, 20(3), 119-127. doi:10.1016/j.conbuildmat.2005.02.001 es_ES
dc.description.references Salim, R., Ndambuki, J., & Adedokun, D. (2014). Improving the Bearing Strength of Sandy Loam Soil Compressed Earth Block Bricks Using Sugercane Bagasse Ash. Sustainability, 6(6), 3686-3696. doi:10.3390/su6063686 es_ES
dc.description.references Font, A., Soriano, L., Tashima, M. M., Monzó, J., Borrachero, M. V., & Payá, J. (2020). One-part eco-cellular concrete for the precast industry: Functional features and life cycle assessment. Journal of Cleaner Production, 269, 122203. doi:10.1016/j.jclepro.2020.122203 es_ES
dc.description.references Luukkonen, T., Abdollahnejad, Z., Yliniemi, J., Kinnunen, P., & Illikainen, M. (2018). One-part alkali-activated materials: A review. Cement and Concrete Research, 103, 21-34. doi:10.1016/j.cemconres.2017.10.001 es_ES
dc.subject.ods 09.- Desarrollar infraestructuras resilientes, promover la industrialización inclusiva y sostenible, y fomentar la innovación es_ES
dc.subject.ods 11.- Conseguir que las ciudades y los asentamientos humanos sean inclusivos, seguros, resilientes y sostenibles es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem