Resumen:
|
[ES] El principal objetivo del trabajo es el estudio de las posibles trayectorias de intercepción a cuerpos extrasolares con órbitas de paso cercanas a la Tierra. En este estudio se toman como punto de partida para la ...[+]
[ES] El principal objetivo del trabajo es el estudio de las posibles trayectorias de intercepción a cuerpos extrasolares con órbitas de paso cercanas a la Tierra. En este estudio se toman como punto de partida para la maniobra los puntos de Lagrange L1 y L2.
A partir de los datos del objeto a interceptar, se deduce inicialmente su órbita kepleriana y se generan gráficos de contorno con las diferentes posibilidades de lanzamiento, obtenidas a partir de la resolución del problema de Lambert en función de la fecha, el tiempo de vuelo y el delta-v requerido. A partir esto se reduce el conjunto de posibilidades para cumplir determinados requisitos temporales de margen de maniobra.
Tras esta fase inicial, se ha desarrollado un propagador orbital con integración numérica de las ecuaciones de Cowell incluyendo las perturbaciones orbitales que actúan tanto sobre el cuerpo a interceptar como sobre la nave. En concreto, se han considerado aquellas perturbaciones debidas a la presencia de otros cuerpos y a la presión de radiación solar, por ser las que mayor influencia presentan en el problema planteado.
Mediante la propagación de las órbitas del interceptador y del cuerpo a interceptar, se analiza el distanciamiento provocado por las perturbaciones y, en el caso de que este se considere suficiente para impedir el acercamiento deseado, se hace un segundo estudio de las variaciones posibles en las condiciones de la maniobra. Este estudio realiza una corrección iterativa de la magnitud y dirección del impulso hasta que la intercepción vuelve a ser efectiva.
La herramienta ha sido desarrollada siguiendo un esquema modular, y la correcta operación de los distintos bloques que la componen ha sido validada mediante comparación con resultados numéricos y gráficos extraídos de la literatura.
[-]
[EN] The main objective of this work is the study of the possible interception trajectories of extrasolar bodies with near-Earth orbits. In this study, the Lagrange points L1 and L2 are taken as the starting point of the ...[+]
[EN] The main objective of this work is the study of the possible interception trajectories of extrasolar bodies with near-Earth orbits. In this study, the Lagrange points L1 and L2 are taken as the starting point of the maneuver.
From the data of the object to be intercepted, its Keplerian orbit is initially deduced and contour plots are generated with the different launch possibilities, obtained from the resolution of the Lambert problem as a function of the date, the time of flight and the delta-v required. Thus, the set of possibilities to meet certain temporary requirements is reduced.
After this initial phase, based on solving the Lambert problem, an orbital propagator has been developed employing numerical integration of Cowell's equations, including both the orbital perturbations that act on the body to be intercepted and on the spacecraft. Specifically, those disturbances due to the presence of third bodies and the pressure of solar radiation have been considered, since they are the ones that have the greatest influence on the problem posed.
By propagating the orbits of the interceptor and the body to be intercepted, the distance from the initial orbit caused by the disturbances is analyzed and, if this is large enough to prevent the desired approach, a second study is made on the possible variations in the initial conditions of the trajectory for the interception to be viable. This study performs an iterative correction of the magnitude and direction of the impulse until the interception becomes effective again.
The tool has been developed following a modular scheme, and the correct operation of the different blocks that compose it has been validated by comparing with numerical and graphic results extracted from the literature.
[-]
|