- -

Numerical and experimental analysis of thermo-aerodynamic performance in an aero engine surface heat exchanger

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Numerical and experimental analysis of thermo-aerodynamic performance in an aero engine surface heat exchanger

Mostrar el registro completo del ítem

Chávez-Modena, M.; Valero, E.; Miguel González, L.; Broatch, A.; Garcia Tiscar, J.; Felgueroso-Rodríguez, A. (2021). Numerical and experimental analysis of thermo-aerodynamic performance in an aero engine surface heat exchanger. Institute of Aeronautics and Astronautics, Inc. 1-12. https://doi.org/10.2514/6.2021-2901

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/173454

Ficheros en el ítem

Metadatos del ítem

Título: Numerical and experimental analysis of thermo-aerodynamic performance in an aero engine surface heat exchanger
Autor: Chávez-Modena, Miguel Valero, Eusebio Miguel González,Leo Broatch, A. GARCIA TISCAR, JORGE Felgueroso-Rodríguez, Andrés
Entidad UPV: Universitat Politècnica de València. Departamento de Máquinas y Motores Térmicos - Departament de Màquines i Motors Tèrmics
Fecha difusión:
Resumen:
[EN] A surface air-cooled oil cooler (SACOC) is a passive heat exchanger used to evacuate a large quantity of heat from the oil circuit of a turbofan engine to its secondary flow with minimal perturbation. Using the secondary ...[+]
Derechos de uso: Reserva de todos los derechos
ISBN: 978-1-62410-610-1
Fuente:
AIAA AVIATION 2021 Forum [Proceedings].
DOI: 10.2514/6.2021-2901
Editorial:
Institute of Aeronautics and Astronautics, Inc.
Versión del editor: https://doi.org/10.2514/6.2021-2901
Título del congreso: AIAA AVIATION Forum and Exposition 2021
Lugar del congreso: Online
Fecha congreso: Agosto 02-06,2021
Código del Proyecto:
info:eu-repo/grantAgreement/EC/H2020/831977/EU/Aerodynamic upgrade of Surface Air Cooled Oil Cooler (SACOC)/
info:eu-repo/grantAgreemen/MCIU//RTI2018-096791-B-C21
Agradecimientos:
This project has received funding from the Clean Sky 2 Joint Undertaking under the European Union¿s Horizon 2020 research and innovation programme under grant agreement No 831977 Aerodynamic upgrade of Surface AirCooled ...[+]
Tipo: Comunicación en congreso Capítulo de libro

References

Sousa, J., Villafañe, L., & Paniagua, G. (2014). Thermal analysis and modeling of surface heat exchangers operating in the transonic regime. Energy, 64, 961-969. doi:10.1016/j.energy.2013.11.032

Villafañe, L., & Paniagua, G. (2018). Aerodynamic impact of finned heat exchangers on transonic flows. Experimental Thermal and Fluid Science, 97, 223-236. doi:10.1016/j.expthermflusci.2018.04.012

Kim, S., Min, J. K., Ha, M. Y., & Son, C. (2014). Investigation of high-speed bypass effect on the performance of the surface air–oil heat exchanger for an aero engine. International Journal of Heat and Mass Transfer, 77, 321-334. doi:10.1016/j.ijheatmasstransfer.2014.05.025 [+]
Sousa, J., Villafañe, L., & Paniagua, G. (2014). Thermal analysis and modeling of surface heat exchangers operating in the transonic regime. Energy, 64, 961-969. doi:10.1016/j.energy.2013.11.032

Villafañe, L., & Paniagua, G. (2018). Aerodynamic impact of finned heat exchangers on transonic flows. Experimental Thermal and Fluid Science, 97, 223-236. doi:10.1016/j.expthermflusci.2018.04.012

Kim, S., Min, J. K., Ha, M. Y., & Son, C. (2014). Investigation of high-speed bypass effect on the performance of the surface air–oil heat exchanger for an aero engine. International Journal of Heat and Mass Transfer, 77, 321-334. doi:10.1016/j.ijheatmasstransfer.2014.05.025

Adams, J. “Advanced heat transfer surfaces for gas turbine heat exchangers,” PhD thesis.University of Oxford, Vol. 19,2004.

Doo, J. H., Ha, M. Y., Min, J. K., Stieger, R., Rolt, A., & Son, C. (2012). An investigation of cross-corrugated heat exchanger primary surfaces for advanced intercooled-cycle aero engines (Part-I: Novel geometry of primary surface). International Journal of Heat and Mass Transfer, 55(19-20), 5256-5267. doi:10.1016/j.ijheatmasstransfer.2012.05.034

Doo, J. H., Ha, M. Y., Min, J. K., Stieger, R., Rolt, A., & Son, C. (2013). An investigation of cross-corrugated heat exchanger primary surfaces for advanced intercooled-cycle aero engines (Part-II: Design optimization of primary surface). International Journal of Heat and Mass Transfer, 61, 138-148. doi:10.1016/j.ijheatmasstransfer.2013.01.084

Qu, Z. G., Tao, W. Q., & He, Y. L. (2004). Three-Dimensional Numerical Simulation on Laminar Heat Transfer and Fluid Flow Characteristics of Strip Fin Surface With X-Arrangement of Strips. Journal of Heat Transfer, 126(5), 697-707. doi:10.1115/1.1798971

Tao, W. Q., Cheng, Y. P., & Lee, T. S. (2007). The Influence of Strip Location on the Pressure Drop and Heat Transfer Performance of a Slotted Fin. Numerical Heat Transfer, Part A: Applications, 52(5), 463-480. doi:10.1080/10407780701301652

Torregrosa, A. J., Broatch, A., García-Tíscar, J., & Roig, F. (2020). Experimental verification of hydrodynamic similarity in hot flows. Experimental Thermal and Fluid Science, 119, 110220. doi:10.1016/j.expthermflusci.2020.110220

Serrano, J. R., Arnau, F. J., Gracía-Cuevas, L. M., Samala, V., & Smith, L. (2019). Experimental approach for the characterization and performance analysis of twin entry radial-inflow turbines in a gas stand and with different flow admission conditions. Applied Thermal Engineering, 159, 113737. doi:10.1016/j.applthermaleng.2019.113737

Wrenick, S., Sutor, P., Pangilinan, H., & Schwarz, E. E. (2005). Heat Transfer Properties of Engine Oils. World Tribology Congress III, Volume 1. doi:10.1115/wtc2005-64316

Menter, F. (1993). Zonal Two Equation k-w Turbulence Models For Aerodynamic Flows. 23rd Fluid Dynamics, Plasmadynamics, and Lasers Conference. doi:10.2514/6.1993-2906

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem