Sousa, J., Villafañe, L., & Paniagua, G. (2014). Thermal analysis and modeling of surface heat exchangers operating in the transonic regime. Energy, 64, 961-969. doi:10.1016/j.energy.2013.11.032
Villafañe, L., & Paniagua, G. (2018). Aerodynamic impact of finned heat exchangers on transonic flows. Experimental Thermal and Fluid Science, 97, 223-236. doi:10.1016/j.expthermflusci.2018.04.012
Kim, S., Min, J. K., Ha, M. Y., & Son, C. (2014). Investigation of high-speed bypass effect on the performance of the surface air–oil heat exchanger for an aero engine. International Journal of Heat and Mass Transfer, 77, 321-334. doi:10.1016/j.ijheatmasstransfer.2014.05.025
[+]
Sousa, J., Villafañe, L., & Paniagua, G. (2014). Thermal analysis and modeling of surface heat exchangers operating in the transonic regime. Energy, 64, 961-969. doi:10.1016/j.energy.2013.11.032
Villafañe, L., & Paniagua, G. (2018). Aerodynamic impact of finned heat exchangers on transonic flows. Experimental Thermal and Fluid Science, 97, 223-236. doi:10.1016/j.expthermflusci.2018.04.012
Kim, S., Min, J. K., Ha, M. Y., & Son, C. (2014). Investigation of high-speed bypass effect on the performance of the surface air–oil heat exchanger for an aero engine. International Journal of Heat and Mass Transfer, 77, 321-334. doi:10.1016/j.ijheatmasstransfer.2014.05.025
Adams, J. “Advanced heat transfer surfaces for gas turbine heat exchangers,” PhD thesis.University of Oxford, Vol. 19,2004.
Doo, J. H., Ha, M. Y., Min, J. K., Stieger, R., Rolt, A., & Son, C. (2012). An investigation of cross-corrugated heat exchanger primary surfaces for advanced intercooled-cycle aero engines (Part-I: Novel geometry of primary surface). International Journal of Heat and Mass Transfer, 55(19-20), 5256-5267. doi:10.1016/j.ijheatmasstransfer.2012.05.034
Doo, J. H., Ha, M. Y., Min, J. K., Stieger, R., Rolt, A., & Son, C. (2013). An investigation of cross-corrugated heat exchanger primary surfaces for advanced intercooled-cycle aero engines (Part-II: Design optimization of primary surface). International Journal of Heat and Mass Transfer, 61, 138-148. doi:10.1016/j.ijheatmasstransfer.2013.01.084
Qu, Z. G., Tao, W. Q., & He, Y. L. (2004). Three-Dimensional Numerical Simulation on Laminar Heat Transfer and Fluid Flow Characteristics of Strip Fin Surface With X-Arrangement of Strips. Journal of Heat Transfer, 126(5), 697-707. doi:10.1115/1.1798971
Tao, W. Q., Cheng, Y. P., & Lee, T. S. (2007). The Influence of Strip Location on the Pressure Drop and Heat Transfer Performance of a Slotted Fin. Numerical Heat Transfer, Part A: Applications, 52(5), 463-480. doi:10.1080/10407780701301652
Torregrosa, A. J., Broatch, A., García-Tíscar, J., & Roig, F. (2020). Experimental verification of hydrodynamic similarity in hot flows. Experimental Thermal and Fluid Science, 119, 110220. doi:10.1016/j.expthermflusci.2020.110220
Serrano, J. R., Arnau, F. J., Gracía-Cuevas, L. M., Samala, V., & Smith, L. (2019). Experimental approach for the characterization and performance analysis of twin entry radial-inflow turbines in a gas stand and with different flow admission conditions. Applied Thermal Engineering, 159, 113737. doi:10.1016/j.applthermaleng.2019.113737
Wrenick, S., Sutor, P., Pangilinan, H., & Schwarz, E. E. (2005). Heat Transfer Properties of Engine Oils. World Tribology Congress III, Volume 1. doi:10.1115/wtc2005-64316
Menter, F. (1993). Zonal Two Equation k-w Turbulence Models For Aerodynamic Flows. 23rd Fluid Dynamics, Plasmadynamics, and Lasers Conference. doi:10.2514/6.1993-2906
[-]