Mostrar el registro sencillo del ítem
dc.contributor.author | Chávez-Modena, Miguel | es_ES |
dc.contributor.author | Valero, Eusebio | es_ES |
dc.contributor.author | Miguel González,Leo | es_ES |
dc.contributor.author | Broatch, A. | es_ES |
dc.contributor.author | GARCIA TISCAR, JORGE | es_ES |
dc.contributor.author | Felgueroso-Rodríguez, Andrés | es_ES |
dc.date.accessioned | 2021-09-29T05:44:49Z | |
dc.date.available | 2021-09-29T05:44:49Z | |
dc.date.issued | 2021-08-06 | es_ES |
dc.identifier.isbn | 978-1-62410-610-1 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/173454 | |
dc.description.abstract | [EN] A surface air-cooled oil cooler (SACOC) is a passive heat exchanger used to evacuate a large quantity of heat from the oil circuit of a turbofan engine to its secondary flow with minimal perturbation. Using the secondary flow as a heat sink has the advantage of the evacuated enthalpy being available in the nozzle. The performance of a SACOC is therefore measured in terms of maximum heat release capacity with minimal pressure loss and flow perturbations. These heat exchangers are typically composed of parallel fins and are usually tested in bespoke wind tunnels where the interaction between the three-dimensional high velocity flow and the heat exchangers is evaluated. Modern numerical computations that include the solution of the fluid equations in the flow field and a conjugate thermal problem can be also performed. This numerical approach, once validated, allows a complete and computationally affordable analysis of the aero-thermodynamic performance of the SACOC. In this work, a first comparison between both experimental and computational perspectives is presented in terms of pressure and temperature profiles to achieve a complete characterization of the device. This double experimental numerical perspective allows comparing the behaviour of the different fins of the SACOC depending on their relative position but also to trust the numerical conclusions with experimental robust data. | es_ES |
dc.description.sponsorship | This project has received funding from the Clean Sky 2 Joint Undertaking under the European Union¿s Horizon 2020 research and innovation programme under grant agreement No 831977 Aerodynamic upgrade of Surface AirCooled Oil Coolers (SACOC). Leo M. González acknowledges the financial support from the Spanish Ministry for Science, Innovation and Universities (MCIU) under grant RTI2018-096791-B-C21 Hidrodinámica de elementos de amortiguamiento del movimiento de aerogeneradores flotantes. The authors also wish to thank Safran Aircraft Engines for their kind permission to share the data presented in this publication | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | Institute of Aeronautics and Astronautics, Inc. | es_ES |
dc.relation | info:eu-repo/grantAgreemen/MCIU//RTI2018-096791-B-C21 | es_ES |
dc.relation.ispartof | AIAA AVIATION 2021 Forum [Proceedings] | es_ES |
dc.rights | Reserva de todos los derechos | es_ES |
dc.subject.classification | MAQUINAS Y MOTORES TERMICOS | es_ES |
dc.subject.classification | INGENIERIA AEROESPACIAL | es_ES |
dc.title | Numerical and experimental analysis of thermo-aerodynamic performance in an aero engine surface heat exchanger | es_ES |
dc.type | Comunicación en congreso | es_ES |
dc.type | Capítulo de libro | es_ES |
dc.identifier.doi | 10.2514/6.2021-2901 | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/EC/H2020/831977/EU/Aerodynamic upgrade of Surface Air Cooled Oil Cooler (SACOC)/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Máquinas y Motores Térmicos - Departament de Màquines i Motors Tèrmics | es_ES |
dc.description.bibliographicCitation | Chávez-Modena, M.; Valero, E.; Miguel González, L.; Broatch, A.; Garcia Tiscar, J.; Felgueroso-Rodríguez, A. (2021). Numerical and experimental analysis of thermo-aerodynamic performance in an aero engine surface heat exchanger. Institute of Aeronautics and Astronautics, Inc. 1-12. https://doi.org/10.2514/6.2021-2901 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.conferencename | AIAA AVIATION Forum and Exposition 2021 | es_ES |
dc.relation.conferencedate | Agosto 02-06,2021 | es_ES |
dc.relation.conferenceplace | Online | es_ES |
dc.relation.publisherversion | https://doi.org/10.2514/6.2021-2901 | es_ES |
dc.description.upvformatpinicio | 1 | es_ES |
dc.description.upvformatpfin | 12 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.relation.pasarela | S\444474 | es_ES |
dc.contributor.funder | Ministerio de Ciencia, Innovación y Universidades | es_ES |
dc.description.references | Sousa, J., Villafañe, L., & Paniagua, G. (2014). Thermal analysis and modeling of surface heat exchangers operating in the transonic regime. Energy, 64, 961-969. doi:10.1016/j.energy.2013.11.032 | es_ES |
dc.description.references | Villafañe, L., & Paniagua, G. (2018). Aerodynamic impact of finned heat exchangers on transonic flows. Experimental Thermal and Fluid Science, 97, 223-236. doi:10.1016/j.expthermflusci.2018.04.012 | es_ES |
dc.description.references | Kim, S., Min, J. K., Ha, M. Y., & Son, C. (2014). Investigation of high-speed bypass effect on the performance of the surface air–oil heat exchanger for an aero engine. International Journal of Heat and Mass Transfer, 77, 321-334. doi:10.1016/j.ijheatmasstransfer.2014.05.025 | es_ES |
dc.description.references | Adams, J. “Advanced heat transfer surfaces for gas turbine heat exchangers,” PhD thesis.University of Oxford, Vol. 19,2004. | es_ES |
dc.description.references | Doo, J. H., Ha, M. Y., Min, J. K., Stieger, R., Rolt, A., & Son, C. (2012). An investigation of cross-corrugated heat exchanger primary surfaces for advanced intercooled-cycle aero engines (Part-I: Novel geometry of primary surface). International Journal of Heat and Mass Transfer, 55(19-20), 5256-5267. doi:10.1016/j.ijheatmasstransfer.2012.05.034 | es_ES |
dc.description.references | Doo, J. H., Ha, M. Y., Min, J. K., Stieger, R., Rolt, A., & Son, C. (2013). An investigation of cross-corrugated heat exchanger primary surfaces for advanced intercooled-cycle aero engines (Part-II: Design optimization of primary surface). International Journal of Heat and Mass Transfer, 61, 138-148. doi:10.1016/j.ijheatmasstransfer.2013.01.084 | es_ES |
dc.description.references | Qu, Z. G., Tao, W. Q., & He, Y. L. (2004). Three-Dimensional Numerical Simulation on Laminar Heat Transfer and Fluid Flow Characteristics of Strip Fin Surface With X-Arrangement of Strips. Journal of Heat Transfer, 126(5), 697-707. doi:10.1115/1.1798971 | es_ES |
dc.description.references | Tao, W. Q., Cheng, Y. P., & Lee, T. S. (2007). The Influence of Strip Location on the Pressure Drop and Heat Transfer Performance of a Slotted Fin. Numerical Heat Transfer, Part A: Applications, 52(5), 463-480. doi:10.1080/10407780701301652 | es_ES |
dc.description.references | Torregrosa, A. J., Broatch, A., García-Tíscar, J., & Roig, F. (2020). Experimental verification of hydrodynamic similarity in hot flows. Experimental Thermal and Fluid Science, 119, 110220. doi:10.1016/j.expthermflusci.2020.110220 | es_ES |
dc.description.references | Serrano, J. R., Arnau, F. J., Gracía-Cuevas, L. M., Samala, V., & Smith, L. (2019). Experimental approach for the characterization and performance analysis of twin entry radial-inflow turbines in a gas stand and with different flow admission conditions. Applied Thermal Engineering, 159, 113737. doi:10.1016/j.applthermaleng.2019.113737 | es_ES |
dc.description.references | Wrenick, S., Sutor, P., Pangilinan, H., & Schwarz, E. E. (2005). Heat Transfer Properties of Engine Oils. World Tribology Congress III, Volume 1. doi:10.1115/wtc2005-64316 | es_ES |
dc.description.references | Menter, F. (1993). Zonal Two Equation k-w Turbulence Models For Aerodynamic Flows. 23rd Fluid Dynamics, Plasmadynamics, and Lasers Conference. doi:10.2514/6.1993-2906 | es_ES |