- -

Redes neuronales y aprendizaje por refuerzo en el control de turbinas eólicas

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Redes neuronales y aprendizaje por refuerzo en el control de turbinas eólicas

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Sierra-García, J. E. es_ES
dc.contributor.author Santos, M. es_ES
dc.date.accessioned 2021-10-05T06:57:03Z
dc.date.available 2021-10-05T06:57:03Z
dc.date.issued 2021-09-30
dc.identifier.issn 1697-7912
dc.identifier.uri http://hdl.handle.net/10251/173784
dc.description.abstract [EN] Pitch control of wind turbines is complex due to the intrinsic non-linear behavior of these devices, and the external disturbances they are subjected to related to changing wind conditions and other meteorological phenomena. This difficulty is even higher in the case of floating offshore turbines, due to ocean currents and waves. Neural networks and other intelligent control techniques have been proven very useful for the modeling and control of these complex systems. Thus, this paper presents different intelligent control configurations applied to wind turbine pitch control. Direct pitch control based on neural networks and reinforcement learning, and some hybrid control configurations are described. The usefulness of neuro-estimators for the improvement of controllers is also presented. Finally, some of these techniques are used in an application example with a land wind turbine model. es_ES
dc.description.abstract [ES] El control del ángulo de las palas de las turbinas eólicas es complejo debido al comportamiento no lineal de los aerogeneradores, y a las perturbaciones externas a las que están sometidas debido a las condiciones cambiantes del viento y otros fenómenos meteorológicos. Esta dificultad se agrava en el caso de las turbinas flotantes marinas, donde también les afectan las corrientes marinas y las olas. Las redes neuronales, y otras técnicas del control inteligente, han demostrado ser muy útiles para el modelado y control de estos sistemas. En este trabajo se presentan diferentes configuraciones de control inteligente, basadas principalmente en redes neuronales y aprendizaje por refuerzo, aplicadas al control de las turbinas eólicas. Se describe el control directo del ángulo de las palas del aerogenerador y algunas configuraciones híbridas de control. Se expone la utilidad de los neuro-estimadores para la mejora de los controladores. Finalmente, se muestra un ejemplo de aplicación de algunas de estas técnicas en un modelo de turbina terrestre. es_ES
dc.description.sponsorship Ministerio de Ciencia, Innovación y Universidades: Proyecto MCI AEI/FEDER RTI2018- 094902-B-C21 es_ES
dc.language Español es_ES
dc.publisher Universitat Politècnica de València es_ES
dc.relation.ispartof Revista Iberoamericana de Automática e Informática industrial es_ES
dc.rights Reconocimiento - No comercial - Compartir igual (by-nc-sa) es_ES
dc.subject Wind turbines es_ES
dc.subject Pitch control es_ES
dc.subject Intelligent control es_ES
dc.subject Neural networks reinforcement learning es_ES
dc.subject Turbinas eólicas es_ES
dc.subject Aerogeneradores es_ES
dc.subject Control del ángulo de las palas es_ES
dc.subject Control inteligente es_ES
dc.subject Redes neuronales aprendizaje por refuerzo es_ES
dc.title Redes neuronales y aprendizaje por refuerzo en el control de turbinas eólicas es_ES
dc.title.alternative Neural networks and reinforcement learning in wind turbine control es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.4995/riai.2021.16111
dc.relation.projectID info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/RTI2018-094902-B-C21/ES/ANALISIS Y CONTROL DE UN DISPOSITIVO FLOTANTE HIBRIDO DE ENERGIA EOLICA Y MARINA/ es_ES
dc.rights.accessRights Abierto es_ES
dc.description.bibliographicCitation Sierra-García, JE.; Santos, M. (2021). Redes neuronales y aprendizaje por refuerzo en el control de turbinas eólicas. Revista Iberoamericana de Automática e Informática industrial. 18(4):327-335. https://doi.org/10.4995/riai.2021.16111 es_ES
dc.description.accrualMethod OJS es_ES
dc.relation.publisherversion https://doi.org/10.4995/riai.2021.16111 es_ES
dc.description.upvformatpinicio 327 es_ES
dc.description.upvformatpfin 335 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 18 es_ES
dc.description.issue 4 es_ES
dc.identifier.eissn 1697-7920
dc.relation.pasarela OJS\16111 es_ES
dc.contributor.funder Ministerio de Ciencia, Innovación y Universidades es_ES
dc.description.references Abouheaf, M., Gueaieb, W., Sharaf, A. 2018. Model-free adaptive learning control scheme for wind turbines with doubly fed induction generators. IET Renewable Power Generation 12(14), 1675-1686. https://doi.org/10.1049/iet-rpg.2018.5353 es_ES
dc.description.references Alvarez-Ramos, C. M., Santos, M., López, V. 2010. Reinforcement learning vs. A* in a role playing game benchmark scenario. In Computational Intelligence: Foundations and Applications (pp. 644-650). https://doi.org/10.1142/9789814324700_0097 es_ES
dc.description.references Asghar, A. B., Liu, X. 2018a. Adaptive neuro-fuzzy algorithm to estimate effective wind speed and optimal rotor speed for variable-speed wind turbine. Neurocomputing 272, 495-504. https://doi.org/10.1016/j.neucom.2017.07.022 es_ES
dc.description.references Asghar, A. B., Liu, X. 2018b. Estimation of wind speed probability distribution and wind energy potential using adaptive neuro-fuzzy methodology. Neurocomputing, 287, 58-67. https://doi.org/10.1016/j.neucom.2018.01.077 es_ES
dc.description.references Casteleiro-Roca, J.L., Quintián, H., Calvo-Rolle, J.L, Méndez-Pérez, J. A., Perez-Castelo, F.J., Corchado, E. 2020. Lithium iron phosphate power cell fault detection system based on hybrid intelligent system. Logic Journal of the IGPL, 28(1), 71-82. https://doi.org/10.1093/jigpal/jzz072 es_ES
dc.description.references Chavero-Navarrete, E., Trejo-Perea, M., Jáuregui-Correa, J. C., Carrillo- Serrano, R. V., Ronquillo-Lomeli, G., Ríos-Moreno, J. G. 2020. Hierarchical pitch control for small wind turbines based on fuzzy logic and anticipated wind speed measurement. Applied Sciences, 10(13), 4592. https://doi.org/10.3390/app10134592 es_ES
dc.description.references Chen, P., Han, D., Tan, F., Wang, J. 2020. Reinforcement-based robust variable pitch control of wind turbines. IEEE Access 8, 20493-20502. https://doi.org/10.1109/ACCESS.2020.2968853 es_ES
dc.description.references Demirdelen, T., Tekin, P., Aksu, I. O., Ekinci, F. 2019. The prediction model of characteristics for wind turbines based on meteorological properties using neural network swarm intelligence. Sustainability, 11(17), 4803. https://doi.org/10.3390/su11174803 es_ES
dc.description.references Deng, X., Yang, J., Sun, Y., Song, D., Xiang, X., Ge, X., Joo, Y. H. 2019. Sensorless effective wind speed estimation method based on unknown input disturbance observer and extreme learning machine. Energy, 186, 115790. https://doi.org/10.1016/j.energy.2019.07.120 es_ES
dc.description.references Deng, X., Yang, J., Sun, Y., Song, D., Yang, Y., Joo, Y. H. 2020. An effective wind speed estimation based extended optimal torque control for maximum wind energy capture. IEEE Access, 8, 65959-65969. https://doi.org/10.1109/ACCESS.2020.2984654 es_ES
dc.description.references Du, J., Wang, B. 2020. Pitch Control of wind turbines based on BP neural network PI. In Journal of Physics: Conference Series (Vol. 1678, No. 1, p. 012060). IOP Publishing. https://doi.org/10.1088/1742-6596/1678/1/012060 es_ES
dc.description.references El Maati, Y. A., El Bahir, L. 2020. Optimal fault tolerant control of large-scale wind turbines in the case of the pitch actuator partial faults. Complexity. https://doi.org/10.1155/2020/6210407 es_ES
dc.description.references Fernandez-Gauna, B., Fernandez-Gamiz, U., Grana, M. 2017. Variable speed wind turbine controller adaptation by reinforcement learning. Integrated Computer-Aided Engineering 24(1), 27-39. https://doi.org/10.3233/ICA-160531 es_ES
dc.description.references Fernandez-Gauna, B., Osa, J. L., Graña, M. 2018. Experiments of conditioned reinforcement learning in continuous space control tasks. Neurocomputing 271, 38-47. https://doi.org/10.1016/j.neucom.2016.08.155 es_ES
dc.description.references Guo, C., Wang, D. 2019. Frequency regulation and coordinated control for complex wind power systems. Complexity, 2019. https://doi.org/10.1155/2019/8525397 es_ES
dc.description.references Hosseini, E., Aghadavoodi, E., Ramírez, L. M. F. 2020. Improving response of wind turbines by pitch angle controller based on gain-scheduled recurrent ANFIS type 2 with passive reinforcement learning. Renewable Energy, 157, 897-910. https://doi.org/10.1016/j.renene.2020.05.060 es_ES
dc.description.references IRENA. 2019. Future of wind: Deployment, investment, technology, grid integration and socio-economic aspects (A Global Energy Transformation paper), International Renewable Energy Agency, Abu Dhabi. https://www.irena.org/-/media/Files/IRENA/Agency/Publication/2019/Oct/IRENA_Future_of_wind_2019.pdf es_ES
dc.description.references Jeon, T., Paek, I. 2021. Design and verification of the LQR controller based on fuzzy logic for large wind turbine. Energies, 14(1), 230. https://doi.org/10.3390/en14010230 es_ES
dc.description.references Jie, W., Jingchun, C., Lin, Y., Wenliang, W., Jian, D. 2020. Pitch control of wind turbine based on deep neural network. In IOP Conference Series: Earth and Environmental Science (Vol. 619, No. 1, p. 012034). IOP Publishing https://doi.org/10.1088/1755-1315/619/1/012034 es_ES
dc.description.references Jove, E., Casteleiro‐Roca, J. L., Quintián, H., Méndez‐Pérez, J. A., Calvo‐Rolle, J. L. 2019. A fault detection system based on unsupervised techniques for industrial control loops. Expert Systems, 36(4), e12395. https://doi.org/10.1111/exsy.12395 es_ES
dc.description.references Jove, E., Casteleiro-Roca, J., Quintián, H., Méndez-Pérez, J. A., Calvo-Rolle, J. L. 2020. Detección de anomalías basada en técnicas inteligentes de una planta de obtención de material bicomponente empleado en la fabricación de palas de aerogenerador. Revista Iberoamericana de Automática e Informática industrial, 17(1), 84-93. https://doi.org/10.4995/riai.2019.11055 es_ES
dc.description.references Li, M., Wang, S. 2019. Dynamic fault monitoring of pitch system in wind turbines using selective ensemble small-world neural networks. Energies, 12(17), 3256. https://doi.org/10.3390/en12173256 es_ES
dc.description.references Mikati, M., Santos, M., Armenta, C. 2013. Electric grid dependence on the configuration of a small-scale wind and solar power hybrid system. Renewable energy, 57, 587-593. https://doi.org/10.1016/j.renene.2013.02.018 es_ES
dc.description.references Moodi, H., Bustan, D. 2019. Wind turbine control using TS systems with nonlinear consequent parts. Energy, 172, 922-931. https://doi.org/10.1016/j.energy.2019.01.133 es_ES
dc.description.references Naciones Unidas. 2021. https://sdgs.un.org/2030agenda. Accedido por última vez en 15/08/2021 es_ES
dc.description.references Ngo, Q. V., Chai, Y., Nguyen, T. T. 2020. The fuzzy-PID based-pitch angle controller for small-scale wind turbine. International Journal of Power Electronics and Drive Systems, 11(1), 135. https://doi.org/10.11591/ijpeds.v11.i1.pp135-142 es_ES
dc.description.references Our World in Data. 2021. https://ourworldindata.org/renewable-energy. Accedido por última vez en 15/08/2021. es_ES
dc.description.references Phan, B. C., Lai, Y. C. 2019. Control strategy of a hybrid renewable energy system based on reinforcement learning approach for an isolated microgrid. Applied Sciences, 9(19), 4001. https://doi.org/10.3390/app9194001 es_ES
dc.description.references Ren, H., Hou, B., Zhou, G., Shen, L., Wei, C., Li, Q. 2020. Variable pitch active disturbance rejection control of wind turbines based on BP neural network PID. IEEE Access, 8, 71782-71797. https://doi.org/10.1109/ACCESS.2020.2987912 es_ES
dc.description.references Rubio, P. M., Quijano, J. F., López, P. Z., Lozano, J. J. F., Cerezo, A. G., Casanova, J. O. 2019. Control inteligente para mejorar el rendimiento de una plataforma semisumergible híbrida con aerogeneradores y convertidores de oleaje: sistema de control borroso para la turbina. Revista Iberoamericana de Automática e Informática industrial, 16(4), 480-491. https://doi.org/10.4995/riai.2019.10972 es_ES
dc.description.references Saénz-Aguirre, A., Zulueta, E., Fernández-Gamiz, U., Lozano, J., Lopez-Guede, J. M. 2019. Artificial neural network based reinforcement learning for wind turbine yaw control. Energies 12(3), 436. https://doi.org/10.3390/en12030436 es_ES
dc.description.references Saénz‐Aguirre, A., Zulueta, E., Fernandez‐Gamiz, U., Ulazia, A., Teso‐Fz‐Betono, D. 2020. Performance enhancement of the artificial neural network-based reinforcement learning for wind turbine yaw control. Wind Energy 23(3), 676-690. https://doi.org/10.1002/we.2451 es_ES
dc.description.references Santos, M. 2011. Un enfoque aplicado del control inteligente. Revista Iberoamericana de Automática e Informática Industrial RIAI 8(4), 283-296. https://doi.org/10.1016/j.riai.2011.09.016 es_ES
dc.description.references Sedighizadeh, M., Rezazadeh, A. 2008. Adaptive PID controller based on reinforcement learning for wind turbine control. In: Proc. World Academy of Science, Engineering and Technology 27, 257-262. es_ES
dc.description.references Sierra, J. E., Santos, M. 2018. Modelling engineering systems using analytical and neural techniques: Hybridization. Neurocomputing, 271, 70-83. https://doi.org/10.1016/j.neucom.2016.11.099 es_ES
dc.description.references Sierra-García, J. E., Santos, M. 2020a. Performance analysis of a wind turbine pitch neurocontroller with unsupervised learning. Complexity, 2020. https://doi.org/10.1155/2020/4681767 es_ES
dc.description.references Sierra-García, J. E., Santos, M. 2020b. Exploring reward strategies for wind turbine pitch control by reinforcement learning. Applied Sciences, 10(21), 7462. https://doi.org/10.3390/app10217462 es_ES
dc.description.references Sierra-García, J. E., Santos, M. 2021a. Improving wind turbine pitch control by effective wind neuro-estimators. IEEE Access, 9, 10413-10425. https://doi.org/10.1109/ACCESS.2021.3051063 es_ES
dc.description.references Sierra-García, J. E., Santos, M. 2021b. Lookup table and neural network hybrid strategy for wind turbine pitch control. Sustainability, 13(6), 3235. https://doi.org/10.3390/su13063235 es_ES
dc.description.references Sierra-Garcia, J. E., Santos, M. 2021c. Deep learning and fuzzy logic to implement a hybrid wind turbine pitch control. Neural Computing and Applications, 1-15. https://doi.org/10.1007/s00521-021-06323-w es_ES
dc.description.references Sutton, R. S., Barto, A. G. 2015. Reinforcement learning an introduction-Second edition, in progress. es_ES
dc.description.references Tomás-Rodríguez, M., Santos, M. 2019. Modelado y control de turbinas eólicas marinas flotantes. Revista Iberoamericana de Automática e Informática Industrial, 16(4), 381-390. https://doi.org/10.4995/riai.2019.11648 es_ES
dc.description.references Tomin, N., Kurbatsky, V., Guliyev, H. 2019. Intelligent control of a wind turbine based on reinforcement learning. In 16th Conf. on Electrical Machines, Drives and Power Systems ELMA, 1-6. IEEE. https://doi.org/10.1109/ELMA.2019.8771645 es_ES
dc.description.references Vives, J., Quiles, E., García, E. 2020. AI techniques applied to diagnosis of vibrations failures in wind turbines. IEEE Latin America Transactions, 18(08), 1478-1486. https://doi.org/10.1109/TLA.2020.9111685 es_ES
dc.description.references Zhao, H., Zhao, J., Qiu, J., Liang, G., Dong, Z. Y. 2020. Cooperative wind farm control with deep reinforcement learning and knowledge assisted learning. IEEE Transactions on Industrial Informatics. https://doi.org/10.1109/TII.2020.2974037 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem