- -

Comunicación distribuida activada por eventos para la sincronización de velocidad angular de motores BLDC en red

RiuNet: Institutional repository of the Polithecnic University of Valencia

Share/Send to

Cited by

Statistics

  • Estadisticas de Uso

Comunicación distribuida activada por eventos para la sincronización de velocidad angular de motores BLDC en red

Show simple item record

Files in this item

dc.contributor.author Hernández-Méndez, A. es_ES
dc.contributor.author Guerrero-Castellanos, J.F. es_ES
dc.contributor.author Orozco-Urbieta, T. es_ES
dc.contributor.author Linares-Flores, J. es_ES
dc.contributor.author Mino-Aguilar, G. es_ES
dc.contributor.author Curiel, G. es_ES
dc.date.accessioned 2021-10-05T07:21:48Z
dc.date.available 2021-10-05T07:21:48Z
dc.date.issued 2021-09-30
dc.identifier.issn 1697-7912
dc.identifier.uri http://hdl.handle.net/10251/173789
dc.description.abstract [EN] This work presents the design and implementation of a collaborative and decentralized control for synchronizing the angular velocity of a group of spatially distributed brushless direct current (BLDC) motors. Via an Active Disturbance Rejection Control (ADRC), acting as an internal-loop, the dynamics of the BLDC can be assimilated to that of a first-order integrator, which is considered an agent. Then, a decentralized collaborative control strategy with event-triggered communication is proposed, which solves the problem of leader-follower consensus for the multi-agent system and thus speed synchronization. The communication topology between agents is modeled using an undirected and connected graph. The decentralized control law incorporates an event function, which indicates the instant at which the i-th agent transmits the angular velocity information to its neighbor. An experimental platform using two BLDC and a virtual leader was developed to validate the proposed approach. The experimental results show excellent performance for angular velocity consensus for regulation tasks, while the bandwidth usage is only 1.25 % regarding a periodic communication implementation. es_ES
dc.description.abstract [ES] Este trabajo presenta el diseño e implementación de un control colaborativo descentralizado para la sincronización de velocidad angular de un conjunto de motores de corriente continua sin escobillas (BLDC) distribuidos espacialmente. Apoyándose de un control por rechazo activo de perturbaciones, actuando como un bucle interno, la dinámica del BLDC puede asimilarse a la de un integrador de primer orden y el cual será considerado un agente. Se propone entonces una estrategia de control colaborativo descentralizado con una comunicación activada por eventos, que resuelve el problema del consenso líder-seguidor del sistema multi-agente y, con ello, la sincronización de velocidades entre motores. La topología de comunicación entre agentes se modela usando un grafo conectado y no dirigido. La ley de control descentralizado incorpora una función de evento, que indica el instante en el que $i$-ésimo agente transmite la información de velocidad angular a su vecino. El intercambio asíncrono de información permite reducir el tráfico de datos en la red de comunicaciones, lo que permite aprovechar el ancho de banda. Al analizar la dinámica de la trayectoria del error del sistema, se establece que el vector de error del sistema multi-agente tiende de forma exponencial y permanece confinado a una vecindad del origen del espacio de estados de error. Aunque la estrategia está diseñada para n-agentes, se desarrolló una plataforma experimental compuesta por dos motores y un líder virtual, permitiendo validar la estrategia. Los resultados experimentales muestran un excelente desempeño del consenso de velocidad angular de ambos motores BLDC para tareas de regulación, mientras que el uso del ancho de banda es de solamente 1.25 % con respecto a una implementación de comunicación periódica. es_ES
dc.language Español es_ES
dc.publisher Universitat Politècnica de València es_ES
dc.relation.ispartof Revista Iberoamericana de Automática e Informática industrial es_ES
dc.rights Reconocimiento - No comercial - Compartir igual (by-nc-sa) es_ES
dc.subject Disturbance rejection es_ES
dc.subject Cooperative control es_ES
dc.subject Event-based control es_ES
dc.subject Consensus es_ES
dc.subject Mechatronics es_ES
dc.subject Control theory es_ES
dc.subject Rechazo a perturbaciones es_ES
dc.subject Control cooperativo es_ES
dc.subject Control basado en eventos es_ES
dc.subject Control de consenso es_ES
dc.subject Mecatrónica es_ES
dc.subject Teoría de control automático es_ES
dc.title Comunicación distribuida activada por eventos para la sincronización de velocidad angular de motores BLDC en red es_ES
dc.title.alternative Distributed event-triggered communication for angular speed synchronization of networked BLDC motors es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.4995/riai.2021.14989
dc.rights.accessRights Abierto es_ES
dc.description.bibliographicCitation Hernández-Méndez, A.; Guerrero-Castellanos, J.; Orozco-Urbieta, T.; Linares-Flores, J.; Mino-Aguilar, G.; Curiel, G. (2021). Comunicación distribuida activada por eventos para la sincronización de velocidad angular de motores BLDC en red. Revista Iberoamericana de Automática e Informática industrial. 18(4):360-370. https://doi.org/10.4995/riai.2021.14989 es_ES
dc.description.accrualMethod OJS es_ES
dc.relation.publisherversion https://doi.org/10.4995/riai.2021.14989 es_ES
dc.description.upvformatpinicio 360 es_ES
dc.description.upvformatpfin 370 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 18 es_ES
dc.description.issue 4 es_ES
dc.identifier.eissn 1697-7920
dc.relation.pasarela OJS\14989 es_ES
dc.description.references Ahmed, N., Cortes, J., Martinez, S., 2016. Distributed control and estimation of robotic vehicle networks: Overview of the special issue-part II. IEEE Control Systems 36 (4), 18-21. https://doi.org/10.1109/MCS.2016.2558398 es_ES
dc.description.references Aranda-Escolástico, E., Guinaldo, M., Heradio, R., Chacon, J., Vargas, H., Sánchez, J., Dormido, S., 2020. Event-based control: A bibliometric analysis of twenty years of research. IEEE Access 8, 47188-47208. https://doi.org/10.1109/ACCESS.2020.2978174 es_ES
dc.description.references Bullo, F., Cortés, J., Martinez, S., 2009. Distributed Control of Robotic Networks: A Mathematical Approach to Motion Coordination Algorithms: A Mathematical Approach to Motion Coordination Algorithms. Princeton University Press. es_ES
dc.description.references https://doi.org/10.1515/9781400831470 es_ES
dc.description.references Chaari, R., Ellouze, F., Koubaa, A., Qureshi, B., Pereira, N., Youssef, H., Tovar, E., 2016. Cyber-physical systems clouds: A survey. Computer Networks 108, 260 - 278. https://doi.org/10.1016/j.comnet.2016.08.017 es_ES
dc.description.references Dimarogonas, D. V., Frazzoli, E., 2009. Distributed event-triggered control strategies for multi-agent systems. In: Communication, Control, and Computing, 2009. Allerton 2009. 47th Annual Allerton Conference on. IEEE, pp. 906-910. https://doi.org/10.1109/ALLERTON.2009.5394897 es_ES
dc.description.references Fuentes, G. A. R., Cortés-Romero, J. A., Zou, Z., Costa-Castelló, R., Zhou, K., 2015. Power active filter control based on a resonant disturbance observer. IET Power Electronics 8 (4), 554-564. https://doi.org/10.1049/iet-pel.2014.0032 es_ES
dc.description.references Garcia, E., Cao, Y., Wang, X., Casbeer, D. W., July 2015. Decentralized eventtriggered consensus of linear multi-agent systems under directed graphs. In: 2015 American Control Conference (ACC). pp. 5764-5769. https://doi.org/10.1109/ACC.2015.7172242 es_ES
dc.description.references Guerrero-Castellanos, J., Rifaï, H., Arnez-Paniagua, V., Linares-Flores, J., Saynes-Torres, L., Mohammed, S., 2018. Robust active disturbance rejection control via control lyapunov functions: Application to actuated-ankle-footorthosis. Control Engineering Practice 80, 49 - 60. https://doi.org/10.1016/j.conengprac.2018.08.008 es_ES
dc.description.references Guerrero-Castellanos, J., Vega-Alonzo, A., Durand, S., Marchand, N., Gonzalez-Diaz, V., Casta˜neda-Camacho, J., Guerrero-Sánchez, W., 2019. Leader-following consensus and formation control of vtol-uavs with eventtriggered communications. Sensors 19 (24), 1-26. https://doi.org/10.3390/s19245498 es_ES
dc.description.references Guinaldo, M., Dimarogonas, D. V., Johansson, K. H., S'anchez, J., Dormido, S., 2013. Distributed event-based control strategies for interconnected linear systems. Control Theory & Applications, IET 7 (6), 877-886. https://doi.org/10.1049/iet-cta.2012.0525 es_ES
dc.description.references Guzey, H. M., Dumlu, A., Guzey, N., Alpay, A., April 2018. Optimal synchronizing speed control of multiple dc motors. In: 2018 4th International Conference on Optimization and Applications (ICOA). pp. 1-5. https://doi.org/10.1109/ICOA.2018.8370508 es_ES
dc.description.references Han, J., 2009. From pid to active disturbance rejection control. Transactions on Industry Electronics 56 (3), 900-906. https://doi.org/10.1109/TIE.2008.2011621 es_ES
dc.description.references Hebertt Sira-Ramírez, Alberto Luviano-Juárez, M. R.-N. E.-W. Z.-B., 2017. Active Disturbance Rejection Control of Dynamic Systems. Butterworth- Heinemann. es_ES
dc.description.references Hernandez-Méndez, A., Linares-Flores, J., Sira-Ramírez, H., Guerrero-Castellanos, J., Mino-Aguilar, G., 2017. A backstepping approach to decentralized active disturbance rejection control of interacting boost converters. Transactions on Industry Applications 53 (4), 4063-4072. https://doi.org/10.1109/TIA.2017.2683441 es_ES
dc.description.references Lee, J., Bagheri, B., Kao, H.-A., 2015. A cyber-physical systems architecture for industry 4.0-based manufacturing systems. Manufacturing Letters 3, 18- 23. https://doi.org/10.1016/j.mfglet.2014.12.001 es_ES
dc.description.references Lewis, F. L., Zhang, H., Hengster-Movric, K., Das, A., 2013. Cooperative control of multi-agent systems: optimal and adaptive design approaches. Springer Science & Business Media. https://doi.org/10.1007/978-1-4471-5574-4 es_ES
dc.description.references Marchand, N., Durand, S., Guerrero-Castellanos, J. F., 2013. A general formula for event-based stabilization of nonlinear systems. Automatic Control, IEEE Transactions on 58 (5), 1332-1337. https://doi.org/10.1109/TAC.2012.2225493 es_ES
dc.description.references Miskowicz, M., 2015. Event-Based Control and Signal Processing. CRC Press. es_ES
dc.description.references Neenu, T., Poongodi, P., 07 2009. Position control of dc motor using genetic algorithm based pid controller. Lecture Notes in Engineering and Computer Science 2177. es_ES
dc.description.references Olfati-Saber, R., Murray, R. M., 2004a. Consensus problems in networks of agents with switching topology and time-delays. Automatic Control, IEEE Transactions on 49 (9), 1520-1533. https://doi.org/10.1109/TAC.2004.834113 es_ES
dc.description.references Olfati-Saber, R., Murray, R. M., Sep. 2004b. Consensus problems in networks of agents with switching topology and time-delays. IEEE Transactions on Automatic Control 49 (9), 1520-1533. https://doi.org/10.1109/TAC.2004.834113 es_ES
dc.description.references Ren, W., Beard, R. W., 2008. Distributed consensus in multi-vehicle cooperative control. Springer. https://doi.org/10.1007/978-1-84800-015-5 es_ES
dc.description.references Sánchez-Santana, J., Guerrero-Castellanos, J., Villarreal-Cervantes, M., Ramırez-Martınez, S., 2018. Control distribuido y disparado por eventos para la formación de robots m'oviles tipo (3, 0)?. In: Congreso Nacional de Control Automático. es_ES
dc.description.references Seyboth, G. S., Dimarogonas, D. V., Johansson, K. H., 2013. Event-based broadcasting for multi-agent average consensus. Automatica 49 (1), 245-252. https://doi.org/10.1016/j.automatica.2012.08.042 es_ES
dc.description.references Shi, T., Liu, H., Geng, Q., Xia, C., 2016. Improved relative coupling control structure for multi-motor speed synchronous driving system. IET Electric Power Applications 10 (6), 451-457. https://doi.org/10.1049/iet-epa.2015.0515 es_ES
dc.description.references Sira-Ramírez, H., Hernández-Méndez, A., Linares-Flores, J., Luviano-Juarez, A., 2016. Robust flat filtering dsp based control of the boost converter. Control Theory and Technology 14 (3), 224-236. https://doi.org/10.1007/s11768-016-6025-6 es_ES
dc.description.references Sira-Ramírez, H., Linares-Flores, J., Luviano-Juárez, A., Cortés-Romero, J., 2015. Ultramodelos globales y el control por rechazo activo de perturbaciones en sistemas no lineales diferencialmente planos. Revista Iberoamericanade Automática e Informática Industrial RIAIg 12 (2), 133 - 144. https://doi.org/10.1016/j.riai.2015.02.001 es_ES
dc.description.references Song, H., Rawat, D. B., Jeschke, S., Brecher, C., 2017. Front matter. In: Cyber- Physical Systems. Intelligent Data-Centric Systems. Academic Press, Boston, pp. i - ii. es_ES
dc.description.references Sun, J., Liu, R., Luo, Y., Sun, W., 2009. Research on multi-motor synchronization control for cutter head of shield machine based on the ring coupled control strategy. In: Xie, M., Xiong, Y., Xiong, C., Liu, H., Hu, Z. (Eds.), Intelligent Robotics and Applications. Springer Berlin Heidelberg, Berlin, Heidelberg, pp. 345-354. https://doi.org/10.1007/978-3-642-10817-4_34 es_ES
dc.description.references Tao, L., Chen, Q., Nan, Y., Dong, F., Jin, Y., 09 2018. Speed tracking and synchronization of a multimotor system based on fuzzy adrc and enhanced adjacent coupling scheme. Complexity 2018, 1-16. https://doi.org/10.1155/2018/5632939 es_ES
dc.description.references Torres, F. J., Guerrero, G. V., García, C. D., Gomez, J. F., Adam, M., Escobar, R. F., Sep. 2016. Master-slave synchronization of robot manipulators driven by induction motors. IEEE Latin America Transactions 14 (9), 3986-3991. https://doi.org/10.1109/TLA.2016.7785923 es_ES
dc.description.references Valenzuela, A., Lorenz, R., 02 2001. Electronic line-shafting control for paper machine drives. Industry Applications, IEEE Transactions on 37, 158 - 164. https://doi.org/10.1109/28.903141 es_ES
dc.description.references Xia, C. L., 2012. Permanent magnet brushless DC motor drives and controls. John Wiley & Sons. https://doi.org/10.1002/9781118188347 es_ES
dc.description.references Xie, D., Xu, S., Zhang, B., Li, Y., Chu, Y., 2016. Consensus for multi-agent systems with distributed adaptive control and an event-triggered communication strategy. IET Control Theory Applications 10 (13), 1547-1555. https://doi.org/10.1049/iet-cta.2015.1221 es_ES
dc.description.references Yang, D., Ren,W., Liu, X., Dec 2014. Decentralized consensus for linear multiagent systems under general directed graphs based on event-triggered/selftriggered strategy. In: 53rd IEEE Conference on Decision and Control. pp. 1983-1988. https://doi.org/10.1109/CDC.2014.7039689 es_ES
dc.description.references Yu, H., Xi, J.-Q., Zhang, F., Hu, Y.-h., 02 2014. Research on gear shifting process without disengaging clutch for a parallel hybrid electric vehicle equipped with amt. Mathematical Problems in Engineering 2014, 1-12. https://doi.org/10.1155/2014/985652 es_ES
dc.description.references Zhang, C., Wu, H., He, J., Xu, C., 2015. Consensus tracking for multi-motor system via observer based variable structure approach. Journal of the Franklin Institute 352 (8), 3366 - 3377, special Issue on Advances in Nonlinear Dynamics and Control. https://doi.org/10.1016/j.jfranklin.2015.01.035 es_ES
dc.description.references Zhang, C.-H., Shi, Q.-S., Cheng, J., 01 2007. Design of fuzzy neural network controller for synchronization drive in multi-motor systems 22, 30-34. es_ES
dc.description.references Zhang, X., Zhang, J., 2014. Distributed event-triggered control of multiagent systems with general linear dynamics. Journal of Control Science and Engineering 2014, 7. https://doi.org/10.1155/2014/698546 es_ES
dc.description.references Zhao, D., Li, C., Ren, J., 12 2009a. Speed synchronization of multiple induction motors with adjacent cross coupling control. pp. 6805-6810. es_ES
dc.description.references Zhao, D.-Z., wen LI, C., REN, J., 2009b. Speed synchronization of multiple induction motors with total sliding mode control. Systems Engineering - Theory & Practice 29 (10), 110 - 117. https://doi.org/10.1016/S1874-8651(10)60077-4 es_ES
dc.description.references Zhao, G., Zhuang, B., Zheng, G., Zhao, Y., 09 2017. Cross-coupling control method for five-axis computer numerical control machine with dual rotary tables. Advances in Mechanical Engineering 9. https://doi.org/10.1177/1687814017733689 es_ES
dc.description.references Zhou, F., Huang, Z., Yang, Y., Wang, J., Li, L., Peng, J., 2017. Decentralized event-triggered cooperative control for multi-agent systems with uncertain dynamics using local estimators. Neurocomputing 237, 388 - 396. https://doi.org/10.1016/j.neucom.2017.01.029 es_ES


This item appears in the following Collection(s)

Show simple item record