Mostrar el registro sencillo del ítem
dc.contributor.author | Troviano, M. | es_ES |
dc.contributor.author | Piris-Botalla, L. E. | es_ES |
dc.contributor.author | Oggier, G.G. | es_ES |
dc.date.accessioned | 2021-10-05T08:18:08Z | |
dc.date.available | 2021-10-05T08:18:08Z | |
dc.date.issued | 2021-09-30 | |
dc.identifier.issn | 1697-7912 | |
dc.identifier.uri | http://hdl.handle.net/10251/173800 | |
dc.description.abstract | [EN] The isolated three-port DC-DC converter is of interest for hybrid energy storage systems due to its advantages of the bidirectional power flow control, step-up and step-down the voltage, and the operation under soft-switching mode. The conventional control of the power flow is carried out using a phase-shift between the voltages at the transformer terminals, which can generate high reactive power due to circulating current on the AC-link of the converter, and high efficiencies only in a limited operating range. To increase the performance over the whole operating range, this work proposes a modulation strategy that extends the soft-switching region and minimizes reactive power. This strategy applies a pulse width on the higher voltage DC port, maintaining traditional square wave modulation on the opposite port. To validate the strategy, results are presented for different power transfer scenarios. | es_ES |
dc.description.abstract | [ES] El convertidor CC-CC de tres puertos aislados es de interés para los sistemas de almacenamiento de energía híbridos por su capacidad para controlar los flujos de energía de manera bidireccional, aumentar y disminuir la tensión y la operación con conmutación suave. El control convencional del flujo de energía se realiza aplicando un desfase entre las tensiones a bornes del transformador, lo que puede generar una elevada potencia reactiva debida a la corriente de circulación en el enlace de CA del convertidor, consiguiéndose rendimientos elevados sólo en un rango de operación limitado. Para aumentar el rendimiento en todo el rango de operación, este trabajo propone una estrategia de modulación que extiende la región de conmutación suave y minimiza la potencia reactiva. Esta estrategia aplica un ancho de pulso en el puerto de mayor tensión de CC, manteniendo la modulación tradicional de onda cuadrada en el puerto opuesto. Para validar la estrategia, se presentan resultados para diferentes escenarios de transferencia de potencia. | es_ES |
dc.description.sponsorship | Este trabajo fue soportado por la Secretaría de Ciencia y Técnica de la Universidad Nacional de Río Cuarto, Argentina (SeCyT, UNRC), la Agencia Nacional de Promoción Científica y Tecnológica (FONCyT, Argentina), la Red MEIHAPER CYTED y el proyecto PIN 04/I240 de la Universidad Nacional del Comahue. | es_ES |
dc.language | Español | es_ES |
dc.publisher | Universitat Politècnica de València | es_ES |
dc.relation.ispartof | Revista Iberoamericana de Automática e Informática industrial | es_ES |
dc.rights | Reconocimiento - No comercial - Compartir igual (by-nc-sa) | es_ES |
dc.subject | Triple active bridge converter (TAB) | es_ES |
dc.subject | Reactive power | es_ES |
dc.subject | AC-link | es_ES |
dc.subject | Modulation strategy | es_ES |
dc.subject | Soft-switching | es_ES |
dc.subject | Convertidor de Tres Puentes Activos (TAB) | es_ES |
dc.subject | Potencia Reactiva | es_ES |
dc.subject | Enlace-CA | es_ES |
dc.subject | Estrategia de Modulación | es_ES |
dc.subject | Conmutación Suave | es_ES |
dc.title | Estrategia de modulación para minimizar la potencia reactiva en el enlace de CA de convertidores CC-CC de tres puertos aislados | es_ES |
dc.title.alternative | Modulation strategy to minimize the reactive power in the AC-link of isolated three-port DC-DC converters | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.4995/riai.2021.14612 | |
dc.rights.accessRights | Abierto | es_ES |
dc.description.bibliographicCitation | Troviano, M.; Piris-Botalla, LE.; Oggier, G. (2021). Estrategia de modulación para minimizar la potencia reactiva en el enlace de CA de convertidores CC-CC de tres puertos aislados. Revista Iberoamericana de Automática e Informática industrial. 18(4):347-359. https://doi.org/10.4995/riai.2021.14612 | es_ES |
dc.description.accrualMethod | OJS | es_ES |
dc.relation.publisherversion | https://doi.org/10.4995/riai.2021.14612 | es_ES |
dc.description.upvformatpinicio | 347 | es_ES |
dc.description.upvformatpfin | 359 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 18 | es_ES |
dc.description.issue | 4 | es_ES |
dc.identifier.eissn | 1697-7920 | |
dc.relation.pasarela | OJS\14612 | es_ES |
dc.contributor.funder | Universidad Nacional de Río Cuarto | es_ES |
dc.contributor.funder | Agencia Nacional de Promoción Científica y Tecnológica, Argentina | es_ES |
dc.contributor.funder | Universidad Nacional del Comahue | es_ES |
dc.contributor.funder | CYTED Ciencia y Tecnología para el Desarrollo | es_ES |
dc.description.references | Bai, H., Mi, C., 2008. Eliminate reactive power and increase system efficiency of isolated bidirectional dual-active-bridge dc-dc converters using novel dual-phase-shift control. IEEE Transactions on Power Electronics 23 (6), 2905-2914. https://doi.org/10.1109/TPEL.2008.2005103 | es_ES |
dc.description.references | Biswas, I., Kastha, D., Bajpai, P., 2021. Small signal modeling and decoupled controller design for a triple active bridge multiport dc-dc converter. IEEE Transactions on Power Electronics 36 (2), 1856-1869. https://doi.org/10.1109/TPEL.2020.3006782 | es_ES |
dc.description.references | Chien, L.-J., Chen, C.-C., Chen, J.-F., Hsieh, Y.-P., 2014. Novel three-port converter with high-voltage gain. IEEE Transactions on Power Electronics 29 (9), 4693-4703. https://doi.org/10.1109/TPEL.2013.2285477 | es_ES |
dc.description.references | Choi, M.-E., Kim, S.-W., Seo, S.-W., 2012. Energy management optimization in a battery/supercapacitor hybrid energy storage system. IEEE Transactions on Smart Grid 3 (1), 463-472. https://doi.org/10.1109/TSG.2011.2164816 | es_ES |
dc.description.references | De Doncker, R., D.M., D., M.H., K., 1991. A threephase soft-switched highpowerdensity dc/dc converter for high-power applications. IEEE Transactions on Industry Applications 27 (1), 63 -73. https://doi.org/10.1109/28.67533 | es_ES |
dc.description.references | Duarte, J., Hendrix, M., Simoes, M., 2007. Three-port bidirectional converter for hybrid fuel cell systems. IEEE Transactions on Power Electronics 22 (2), 480 -487. https://doi.org/10.1109/TPEL.2006.889928 | es_ES |
dc.description.references | Hajiaghasi, S., Salemnia, A., Hamzeh, M., 2019. Hybrid energy storage system for microgids applications: A review. Journal of Energy Storage 21, 543-570. https://doi.org/10.1016/j.est.2018.12.017 | es_ES |
dc.description.references | Kim, S. Y., Song, H.-S., Nam, K., 2012. Idling port isolation control of threeport bidirectional converter for evs. IEEE Transactions on Power Electronics 27 (5), 2495 -2506. https://doi.org/10.1109/TPEL.2011.2172225 | es_ES |
dc.description.references | McDonough, M., 2015. Integration of inductively coupled power transfer and hybrid energy storage system: A multiport power electronics interface for battery-powered electric vehicles. IEEE Transactions on Power Electronics 30 (11), 6423-6433. https://doi.org/10.1109/TPEL.2015.2422300 | es_ES |
dc.description.references | Mendis, N., Muttaqi, K., Perera, S., 2014. Management of battery-supercapacitor hybrid energy storage and synchronous condenser for isolated operation of pmsg based variable-speed wind turbine generating systems. IEEE Transactions on Smart Grid 5 (2), 944-953. https://doi.org/10.1109/TSG.2013.2287874 | es_ES |
dc.description.references | Nguyen, D., Fujita, G., Ta, M. C., 2017. A new soft-switching strategy for three-port converter to be applied in ev application. In: 2017 IEEE 3rd International Future Energy Electronics Conference and ECCE Asia (IFEEC 2017 - ECCE Asia). pp. 1126-1131. https://doi.org/10.1109/IFEEC.2017.7992199 | es_ES |
dc.description.references | Oggier, G., Garcia, G., Oliva, A., 2009. Switching control strategy to minimize dual active bridge converter losses. IEEE Transactions on Power Electronics 24 (7), 1826 -1838. https://doi.org/10.1109/TPEL.2009.2020902 | es_ES |
dc.description.references | Oggier, G., Garcia, G., Oliva, A., 2011. Modulation strategy to operate the dual active bridge dc-dc converter under soft switching in the whole operating range. IEEE Transactions on Power Electronics 26 (4), 1228-1236. https://doi.org/10.1109/TPEL.2010.2072966 | es_ES |
dc.description.references | Oggier, G., Garcia, G., Oliva, A., 2013. Analysis of the influence of switching related parameters in the dab converter under soft-switching. Latin American Applied Research 43 (2), 121-129. | es_ES |
dc.description.references | Oggier, G., Piris-Botalla, L. E., Garcia, G., 2010. Soft-switching analysis for three-port bidirectional dc-dc converters. In: Industry Applications Conference. INDUSCON 9th IEEE/IAS. pp. 1-6. https://doi.org/10.1109/INDUSCON.2010.5740014 | es_ES |
dc.description.references | Piris-Botalla, L., Oggier, G., Airabella, A., Garcia, G., 2012. Analysis and evaluation of power switch losses for three-port bidirectional dc-dc converter. In: International Conference on Industrial Technology (ICIT), 2012 IEEE. pp. 950-955. https://doi.org/10.1109/ICIT.2012.6210061 | es_ES |
dc.description.references | Piris-Botalla, L., Oggier, G., Airabella, A., Garcia, G., 2013. Power losses evaluation of a bidirectional three-port dc-dc converter for hybrid electric system. International Journal of Electrical Power and Energy Systems (58), 1-8. https://doi.org/10.1016/j.ijepes.2013.12.021 | es_ES |
dc.description.references | Piris Botalla, L., Oggier, G., Garrido, D., Garcia, G., 2016. Auxiliary inductances design of a bidirectional three-port dc-dc converter. IEEE Latin America Transactions 14 (6), 2582-2587. https://doi.org/10.1109/TLA.2016.7555222 | es_ES |
dc.description.references | Piris-Botalla, L., Oggier, G. G., Airabella, A. M., García, G. O., 2016. Extending the soft-switching operating range of a bidirectional three-port dc-dc converter. Revista Iberoamericana de Autom'atica e Inform'atica Industrial 13 (1), 127-134. https://doi.org/10.1016/j.riai.2015.04.007 | es_ES |
dc.description.references | Piris-Botalla, L., Oggier, G. G., Garcia, G. O., 2017. Extending the power transfer capability of a three-port dc-dc converter for hybrid energy storage systems. IET Power Electronics 10 (13), 1687-1697. https://doi.org/10.1049/iet-pel.2016.0422 | es_ES |
dc.description.references | Purgat, P., Bandyopadhyay, S., Qin, Z., Bauer, P. G., 2020. Zero voltage switching criteria of triple active bridge converter. IEEE Transactions on Power Electronics, 1-1. https://doi.org/10.1109/TPEL.2020.3027785 | es_ES |
dc.description.references | Saadatizadeh, Z., Babaei, E., Blaabjerg, F., Cecati, C., 2021. Three-port high step-up and high step-down dc-dc converter with zero input current ripple. IEEE Transactions on Power Electronics 36 (2), 1804-1813. https://doi.org/10.1109/TPEL.2020.3007959 | es_ES |
dc.description.references | Sharma, A., Sharma, S., 2019. Review of power electronics in vehicle-to-grid systems. Journal of Energy Storage 21, 337-361. https://doi.org/10.1016/j.est.2018.11.022 | es_ES |
dc.description.references | Sun, Y., Pei, W., Jia, D., Zhang, G., Wang, H., Zhao, L., Feng, Z., 2020. Application of integrated energy storage system in wind power fluctuation mitigation. Journal of Energy Storage 32 (101835). https://doi.org/10.1016/j.est.2020.101835 | es_ES |
dc.description.references | Tao, H., Duarte, J., Hendrix, M., 2008a. Three-port triple-half-bridge bidirectional converter with zero-voltage switching. IEEE Transactions on Power Electronics 23 (2), 782 -792. https://doi.org/10.1109/TPEL.2007.915023 | es_ES |
dc.description.references | Tao, H., Kotsopoulos, A., Duarte, J., Hendrix, M., 2008b. Transformer-coupled multiport zvs bidirectional dc-dc converter with wide input range. IEEE Transaction on Power Electronics 23, 771-781. https://doi.org/10.1109/TPEL.2007.915129 | es_ES |
dc.description.references | Wang, L., Wang, Z., Li, H., 2012. Asymmetrical duty cycle control and decoupled power flow design of a three-port bidirectional dc-dc converter for fuel cell vehicle application. IEEE Transactions on Power Electronics 27 (2), 891-904. https://doi.org/10.1109/TPEL.2011.2160405 | es_ES |
dc.description.references | Wu, H., Sun, K., Ding, S., Xing, Y., 2013. Topology derivation of nonisolated three-port dc-dc converters from dic and doc. IEEE Transactions on Power Electronics 28 (7), 3297-3307. https://doi.org/10.1109/TPEL.2012.2221746 | es_ES |
dc.description.references | Wu, Y., Mahmud, M. H., Christian, S., Fantino, R. A., Gomez, R. A., Zhao, Y., Balda, J. C., 2020. A 150-kw 99% efficient all silicon carbide triple-active-bridge converter for solar-plus-storage systems. IEEE Journal of Emerging and Selected Topics in Power Electronics, 1-1. https://doi.org/10.1109/JESTPE.2020.3044572 | es_ES |
dc.description.references | Ye, Y., Nian, H., Kong, L., Zheng, D., 2019. Efficiency optimization strategy of three port triple active bridge dc-dc converter. In: 2019 22nd International Conference on Electrical Machines and Systems (ICEMS). pp. 1-6. https://doi.org/10.1109/ICEMS.2019.8921669 | es_ES |
dc.description.references | Zhao, C., Round, S., J.W., K., 2008. An isolated three-port bidirectional dc-dc converter with decoupled power flow management. IEEE Transactions on Power Electronics 23 (5), 2443 -2453. https://doi.org/10.1109/TPEL.2008.2002056 | es_ES |
dc.description.references | Zhou, H., Bhattacharya, T., Tran, D., Siew, T., Khambadkone, A., 2011. Composite energy storage system involving battery and ultracapacitor with dynamic energy management in microgrid applications. IEEE Transactions on Power Electronics 26 (3), 923-930. https://doi.org/10.1109/TPEL.2010.2095040 | es_ES |