- -

The periodic points of ε-contractive maps in fuzzy metric spaces

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

The periodic points of ε-contractive maps in fuzzy metric spaces

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Sun, Taixiang es_ES
dc.contributor.author Han, Caihong es_ES
dc.contributor.author Su, Guangwang es_ES
dc.contributor.author Qin, Bin es_ES
dc.contributor.author Li, Lue es_ES
dc.date.accessioned 2021-10-06T06:49:05Z
dc.date.available 2021-10-06T06:49:05Z
dc.date.issued 2021-10-01
dc.identifier.issn 1576-9402
dc.identifier.uri http://hdl.handle.net/10251/173899
dc.description.abstract [EN] In this paper, we introduce the notion of ε-contractive maps in fuzzy metric space (X, M, ∗) and study the periodicities of ε-contractive maps. We show that if (X, M, ∗) is compact and f : X −→ X is ε-contractive, then P(f) = ∩ ∞n=1f n (X) and each connected component of X contains at most one periodic point of f, where P(f) is the set of periodic points of f. Furthermore, we present two examples to illustrate the applicability of the obtained results. es_ES
dc.description.sponsorship Project supported by NNSF of China (11761011) and NSF of Guangxi (2020GXNSFAA297010) and PYMRBAP for Guangxi CU(2021KY0651) es_ES
dc.language Inglés es_ES
dc.publisher Universitat Politècnica de València es_ES
dc.relation.ispartof Applied General Topology es_ES
dc.rights Reconocimiento - No comercial - Sin obra derivada (by-nc-nd) es_ES
dc.subject Fuzzy metric space es_ES
dc.subject Ε-contractive map es_ES
dc.subject Periodic point es_ES
dc.title The periodic points of ε-contractive maps in fuzzy metric spaces es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.4995/agt.2021.14449
dc.relation.projectID info:eu-repo/grantAgreement/NNSF//11761011/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/GXNSF//2020GXNSFAA297010/ es_ES
dc.rights.accessRights Abierto es_ES
dc.description.bibliographicCitation Sun, T.; Han, C.; Su, G.; Qin, B.; Li, L. (2021). The periodic points of ε-contractive maps in fuzzy metric spaces. Applied General Topology. 22(2):311-319. https://doi.org/10.4995/agt.2021.14449 es_ES
dc.description.accrualMethod OJS es_ES
dc.relation.publisherversion https://doi.org/10.4995/agt.2021.14449 es_ES
dc.description.upvformatpinicio 311 es_ES
dc.description.upvformatpfin 319 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 22 es_ES
dc.description.issue 2 es_ES
dc.identifier.eissn 1989-4147
dc.relation.pasarela OJS\14449 es_ES
dc.contributor.funder National Natural Science Foundation of China es_ES
dc.contributor.funder Guangxi Natural Science Fundation, China es_ES
dc.description.references M. Abbas, M. Imdad and D. Gopal, ψ-weak contractions in fuzzy metric spaces, Iranian J. Fuzzy Syst. 8 (2011), 141-148. es_ES
dc.description.references I. Beg, C. Vetro, D, Gopal and M. Imdad, (Φ, ψ)-weak contractions in intuitionistic fuzzy metric spaces, J. Intel. Fuzzy Syst. 26 (2014), 2497-2504. https://doi.org/10.3233/IFS-130920 es_ES
dc.description.references A. George and P. Veeramani, On some results in fuzzy metric spaces, Fuzzy Sets Syst. 64 (1994), 395-399. https://doi.org/10.1016/0165-0114(94)90162-7 es_ES
dc.description.references M. Grabiec, Fixed points in fuzzy metric spaces, Fuzzy Sets Syst. 27 (1989), 385-389. https://doi.org/10.1016/0165-0114(88)90064-4 es_ES
dc.description.references V. Gregori and J. J. Miñana, Some remarks on fuzzy contractive mappings, Fuzzy Sets Syst. 251 (2014), 101-103. https://doi.org/10.1016/j.fss.2014.01.002 es_ES
dc.description.references V. Gregori and J. J. Miñana, On fuzzy $Psi$-contractive sequences and fixed point theorems, Fuzzy Sets Syst. 300 (2016), 93-101. https://doi.org/10.1016/j.fss.2015.12.010 es_ES
dc.description.references V. Gregori and A. Sapena, On fixed-point theorems in fuzzy metric spaces, Fuzzy Sets Syst. 125 (2002), 245-252. https://doi.org/10.1016/S0165-0114(00)00088-9 es_ES
dc.description.references J. Harjani, B. López and K. Sadarangani, Fixed point theorems for cyclic weak contractions in compact metric spaces, J. Nonl. Sci. Appl. 6 (2013), 279-284. https://doi.org/10.22436/jnsa.006.04.05 es_ES
dc.description.references X. Hu, Z. Mo and Y. Zhen, On compactnesses of fuzzy metric spaces (Chinese), J. Sichuan Norm. Univer. (Natur. Sei.) 32 (2009), 184-187. es_ES
dc.description.references I. Kramosil and J. Michàlek, Fuzzy metrics and statistical metric spaces, Kybernetika 11 (1975), 336-344. es_ES
dc.description.references D. Mihet, Fuzzy ψ-contractive mappings in non-Archimedean fuzzy metric spaces, Fuzzy Sets Sys. 159 (2008), 739-744. https://doi.org/10.1016/j.fss.2007.07.006 es_ES
dc.description.references D. Mihet, A note on fuzzy contractive mappings in fuzzy metric spaces, Fuzzy Sets Syst. 251 (2014), 83-91. https://doi.org/10.1016/j.fss.2014.04.010 es_ES
dc.description.references B. Schweizer and A. Sklar, Statistical metrics paces, Pacif. J. Math. 10 (1960), 385-389. https://doi.org/10.2140/pjm.1960.10.313 es_ES
dc.description.references Y. Shen, D. Qiu and W. Chen, Fixed point theorems in fuzzy metric spaces, Appl. Math. Letters 25 (2012), 138-141. https://doi.org/10.1016/j.aml.2011.08.002 es_ES
dc.description.references S. Shukla, D. Gopal and A. F. Roldán-López-de-Hierro, Some fixed point theorems in 1-M-complete fuzzy metric-like spaces, Inter. J. General Syst. 45 (2016), 815-829. https://doi.org/10.1080/03081079.2016.1153084 es_ES
dc.description.references S. Shukla, D. Gopal and W. Sintunavarat, A new class of fuzzy contractive mappings and fixed point theorems, Fuzzy Sets Syst. 359 (2018), 85-94. https://doi.org/10.1016/j.fss.2018.02.010 es_ES
dc.description.references D. Wardowski, Fuzzy contractive mappings and fixed points in fuzzy metric spaces, Fuzzy Sets Syst. 222 (2013), 108-114. https://doi.org/10.1016/j.fss.2013.01.012 es_ES
dc.description.references D. Zheng and P. Wang, On probabilistic Ψ-contractions in Menger probabilistic metric spaces, Fuzzy Sets Syst. 350 (2018), 107-110. https://doi.org/10.1016/j.fss.2018.02.011 es_ES
dc.description.references D. Zheng and P. Wang, Meir-Keeler theorems in fuzzy metric spaces, Fuzzy Sets Syst. 370 (2019), 120-128. https://doi.org/10.1016/j.fss.2018.08.014 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem