- -

The periodic points of ε-contractive maps in fuzzy metric spaces

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

The periodic points of ε-contractive maps in fuzzy metric spaces

Mostrar el registro completo del ítem

Sun, T.; Han, C.; Su, G.; Qin, B.; Li, L. (2021). The periodic points of ε-contractive maps in fuzzy metric spaces. Applied General Topology. 22(2):311-319. https://doi.org/10.4995/agt.2021.14449

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/173899

Ficheros en el ítem

Metadatos del ítem

Título: The periodic points of ε-contractive maps in fuzzy metric spaces
Autor: Sun, Taixiang Han, Caihong Su, Guangwang Qin, Bin Li, Lue
Fecha difusión:
Resumen:
[EN] In this paper, we introduce the notion of ε-contractive maps in fuzzy metric space (X, M, ∗) and study the periodicities of ε-contractive maps. We show that if (X, M, ∗) is compact and f : X −→ X is ε-contractive, ...[+]
Palabras clave: Fuzzy metric space , Ε-contractive map , Periodic point
Derechos de uso: Reconocimiento - No comercial - Sin obra derivada (by-nc-nd)
Fuente:
Applied General Topology. (issn: 1576-9402 ) (eissn: 1989-4147 )
DOI: 10.4995/agt.2021.14449
Editorial:
Universitat Politècnica de València
Versión del editor: https://doi.org/10.4995/agt.2021.14449
Código del Proyecto:
info:eu-repo/grantAgreement/NNSF//11761011/
info:eu-repo/grantAgreement/GXNSF//2020GXNSFAA297010/
Agradecimientos:
Project supported by NNSF of China (11761011) and NSF of Guangxi (2020GXNSFAA297010) and PYMRBAP for Guangxi CU(2021KY0651)
Tipo: Artículo

References

M. Abbas, M. Imdad and D. Gopal, ψ-weak contractions in fuzzy metric spaces, Iranian J. Fuzzy Syst. 8 (2011), 141-148.

I. Beg, C. Vetro, D, Gopal and M. Imdad, (Φ, ψ)-weak contractions in intuitionistic fuzzy metric spaces, J. Intel. Fuzzy Syst. 26 (2014), 2497-2504. https://doi.org/10.3233/IFS-130920

A. George and P. Veeramani, On some results in fuzzy metric spaces, Fuzzy Sets Syst. 64 (1994), 395-399. https://doi.org/10.1016/0165-0114(94)90162-7 [+]
M. Abbas, M. Imdad and D. Gopal, ψ-weak contractions in fuzzy metric spaces, Iranian J. Fuzzy Syst. 8 (2011), 141-148.

I. Beg, C. Vetro, D, Gopal and M. Imdad, (Φ, ψ)-weak contractions in intuitionistic fuzzy metric spaces, J. Intel. Fuzzy Syst. 26 (2014), 2497-2504. https://doi.org/10.3233/IFS-130920

A. George and P. Veeramani, On some results in fuzzy metric spaces, Fuzzy Sets Syst. 64 (1994), 395-399. https://doi.org/10.1016/0165-0114(94)90162-7

M. Grabiec, Fixed points in fuzzy metric spaces, Fuzzy Sets Syst. 27 (1989), 385-389. https://doi.org/10.1016/0165-0114(88)90064-4

V. Gregori and J. J. Miñana, Some remarks on fuzzy contractive mappings, Fuzzy Sets Syst. 251 (2014), 101-103. https://doi.org/10.1016/j.fss.2014.01.002

V. Gregori and J. J. Miñana, On fuzzy $Psi$-contractive sequences and fixed point theorems, Fuzzy Sets Syst. 300 (2016), 93-101. https://doi.org/10.1016/j.fss.2015.12.010

V. Gregori and A. Sapena, On fixed-point theorems in fuzzy metric spaces, Fuzzy Sets Syst. 125 (2002), 245-252. https://doi.org/10.1016/S0165-0114(00)00088-9

J. Harjani, B. López and K. Sadarangani, Fixed point theorems for cyclic weak contractions in compact metric spaces, J. Nonl. Sci. Appl. 6 (2013), 279-284. https://doi.org/10.22436/jnsa.006.04.05

X. Hu, Z. Mo and Y. Zhen, On compactnesses of fuzzy metric spaces (Chinese), J. Sichuan Norm. Univer. (Natur. Sei.) 32 (2009), 184-187.

I. Kramosil and J. Michàlek, Fuzzy metrics and statistical metric spaces, Kybernetika 11 (1975), 336-344.

D. Mihet, Fuzzy ψ-contractive mappings in non-Archimedean fuzzy metric spaces, Fuzzy Sets Sys. 159 (2008), 739-744. https://doi.org/10.1016/j.fss.2007.07.006

D. Mihet, A note on fuzzy contractive mappings in fuzzy metric spaces, Fuzzy Sets Syst. 251 (2014), 83-91. https://doi.org/10.1016/j.fss.2014.04.010

B. Schweizer and A. Sklar, Statistical metrics paces, Pacif. J. Math. 10 (1960), 385-389. https://doi.org/10.2140/pjm.1960.10.313

Y. Shen, D. Qiu and W. Chen, Fixed point theorems in fuzzy metric spaces, Appl. Math. Letters 25 (2012), 138-141. https://doi.org/10.1016/j.aml.2011.08.002

S. Shukla, D. Gopal and A. F. Roldán-López-de-Hierro, Some fixed point theorems in 1-M-complete fuzzy metric-like spaces, Inter. J. General Syst. 45 (2016), 815-829. https://doi.org/10.1080/03081079.2016.1153084

S. Shukla, D. Gopal and W. Sintunavarat, A new class of fuzzy contractive mappings and fixed point theorems, Fuzzy Sets Syst. 359 (2018), 85-94. https://doi.org/10.1016/j.fss.2018.02.010

D. Wardowski, Fuzzy contractive mappings and fixed points in fuzzy metric spaces, Fuzzy Sets Syst. 222 (2013), 108-114. https://doi.org/10.1016/j.fss.2013.01.012

D. Zheng and P. Wang, On probabilistic Ψ-contractions in Menger probabilistic metric spaces, Fuzzy Sets Syst. 350 (2018), 107-110. https://doi.org/10.1016/j.fss.2018.02.011

D. Zheng and P. Wang, Meir-Keeler theorems in fuzzy metric spaces, Fuzzy Sets Syst. 370 (2019), 120-128. https://doi.org/10.1016/j.fss.2018.08.014

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem