- -

Sum connectedness in proximity spaces

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Sum connectedness in proximity spaces

Mostrar el registro completo del ítem

Singh, B.; Singh, D. (2021). Sum connectedness in proximity spaces. Applied General Topology. 22(2):345-354. https://doi.org/10.4995/agt.2021.14809

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/173904

Ficheros en el ítem

Metadatos del ítem

Título: Sum connectedness in proximity spaces
Autor: Singh, Beenu Singh, Davinder
Fecha difusión:
Resumen:
[EN] The notion of sum $ \delta $-connected proximity space which contains the category of $ \delta $-connected and locally $ \delta $-connected space is defined. Several characterizations of it are substantiated. Weaker ...[+]
Palabras clave: Sum δ-connected , Δ-connected , Δ-component , Locally δ-connected
Derechos de uso: Reconocimiento - No comercial - Sin obra derivada (by-nc-nd)
Fuente:
Applied General Topology. (issn: 1576-9402 ) (eissn: 1989-4147 )
DOI: 10.4995/agt.2021.14809
Editorial:
Universitat Politècnica de València
Versión del editor: https://doi.org/10.4995/agt.2021.14809
Tipo: Artículo

References

G. Bezhanishvili, Zero-dimensional proximities and zero-dimensional compactifications, Topology Appl. 156 (2009), 1496-1504. https://doi.org/10.1016/j.topol.2008.12.036

R. Dimitrijević and Lj. Kočinac, On connectedness of proximity spaces, Matem. Vesnik 39 (1987), 27-35.

R. Dimitrijević and Lj. Kočinac, On treelike proximity spaces, Matem. Vesnik 39, no. 3 (1987), 257-261. [+]
G. Bezhanishvili, Zero-dimensional proximities and zero-dimensional compactifications, Topology Appl. 156 (2009), 1496-1504. https://doi.org/10.1016/j.topol.2008.12.036

R. Dimitrijević and Lj. Kočinac, On connectedness of proximity spaces, Matem. Vesnik 39 (1987), 27-35.

R. Dimitrijević and Lj. Kočinac, On treelike proximity spaces, Matem. Vesnik 39, no. 3 (1987), 257-261.

V. A. Efremovic, Infinitesimal spaces, Dokl. Akad. Nauk SSSR 76 (1951), 341-343 (in Russian).

V. A. Efremovic, The geometry of proximity I, Mat. Sb. 31 (1952), 189-200 (in Russian).

J. K. Kohli, A class of spaces containing all connected and all locally connected spaces, Math. Nachr. 82 (1978), 121-129. https://doi.org/10.1002/mana.19780820113

S. G. Mrówka and W. J. Pervin, On uniform connectedness, Proc. Amer. Math. Soc. 15 (1964), 446-449. https://doi.org/10.2307/2034521

S. Naimpally, Proximity Approach to Problems in Topology and Analysis, Oldenbourg Verlag, München, 2009. https://doi.org/10.1524/9783486598605

S. Naimpally and B. D. Warrack, Proximity Spaces, Cambridge Univ. Press, 1970. https://doi.org/10.1017/CBO9780511569364

Y. M. Smirnov, On completeness of proximity spaces I, Amer. Math. Soc. Trans. 38 (1964), 37-73. https://doi.org/10.1090/trans2/038/03

Y. M. Smirnov, On proximity spaces, Amer. Math. Soc. Trans. 38 (1964), 5-35.

S. Willard, General Topology, Addison-Wesley Publishing Co., Reading, Mass.-London-Don Mills, Ont., 1970.

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem