Mostrar el registro sencillo del ítem
dc.contributor.author | Singh, Beenu | es_ES |
dc.contributor.author | Singh, Davinder | es_ES |
dc.date.accessioned | 2021-10-06T06:58:10Z | |
dc.date.available | 2021-10-06T06:58:10Z | |
dc.date.issued | 2021-10-01 | |
dc.identifier.issn | 1576-9402 | |
dc.identifier.uri | http://hdl.handle.net/10251/173904 | |
dc.description.abstract | [EN] The notion of sum $ \delta $-connected proximity space which contains the category of $ \delta $-connected and locally $ \delta $-connected space is defined. Several characterizations of it are substantiated. Weaker forms of sum $ \delta $-connectedness are also studied. | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | Universitat Politècnica de València | es_ES |
dc.relation.ispartof | Applied General Topology | es_ES |
dc.rights | Reconocimiento - No comercial - Sin obra derivada (by-nc-nd) | es_ES |
dc.subject | Sum δ-connected | es_ES |
dc.subject | Δ-connected | es_ES |
dc.subject | Δ-component | es_ES |
dc.subject | Locally δ-connected | es_ES |
dc.title | Sum connectedness in proximity spaces | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.4995/agt.2021.14809 | |
dc.rights.accessRights | Abierto | es_ES |
dc.description.bibliographicCitation | Singh, B.; Singh, D. (2021). Sum connectedness in proximity spaces. Applied General Topology. 22(2):345-354. https://doi.org/10.4995/agt.2021.14809 | es_ES |
dc.description.accrualMethod | OJS | es_ES |
dc.relation.publisherversion | https://doi.org/10.4995/agt.2021.14809 | es_ES |
dc.description.upvformatpinicio | 345 | es_ES |
dc.description.upvformatpfin | 354 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 22 | es_ES |
dc.description.issue | 2 | es_ES |
dc.identifier.eissn | 1989-4147 | |
dc.relation.pasarela | OJS\14809 | es_ES |
dc.description.references | G. Bezhanishvili, Zero-dimensional proximities and zero-dimensional compactifications, Topology Appl. 156 (2009), 1496-1504. https://doi.org/10.1016/j.topol.2008.12.036 | es_ES |
dc.description.references | R. Dimitrijević and Lj. Kočinac, On connectedness of proximity spaces, Matem. Vesnik 39 (1987), 27-35. | es_ES |
dc.description.references | R. Dimitrijević and Lj. Kočinac, On treelike proximity spaces, Matem. Vesnik 39, no. 3 (1987), 257-261. | es_ES |
dc.description.references | V. A. Efremovic, Infinitesimal spaces, Dokl. Akad. Nauk SSSR 76 (1951), 341-343 (in Russian). | es_ES |
dc.description.references | V. A. Efremovic, The geometry of proximity I, Mat. Sb. 31 (1952), 189-200 (in Russian). | es_ES |
dc.description.references | J. K. Kohli, A class of spaces containing all connected and all locally connected spaces, Math. Nachr. 82 (1978), 121-129. https://doi.org/10.1002/mana.19780820113 | es_ES |
dc.description.references | S. G. Mrówka and W. J. Pervin, On uniform connectedness, Proc. Amer. Math. Soc. 15 (1964), 446-449. https://doi.org/10.2307/2034521 | es_ES |
dc.description.references | S. Naimpally, Proximity Approach to Problems in Topology and Analysis, Oldenbourg Verlag, München, 2009. https://doi.org/10.1524/9783486598605 | es_ES |
dc.description.references | S. Naimpally and B. D. Warrack, Proximity Spaces, Cambridge Univ. Press, 1970. https://doi.org/10.1017/CBO9780511569364 | es_ES |
dc.description.references | Y. M. Smirnov, On completeness of proximity spaces I, Amer. Math. Soc. Trans. 38 (1964), 37-73. https://doi.org/10.1090/trans2/038/03 | es_ES |
dc.description.references | Y. M. Smirnov, On proximity spaces, Amer. Math. Soc. Trans. 38 (1964), 5-35. | es_ES |
dc.description.references | S. Willard, General Topology, Addison-Wesley Publishing Co., Reading, Mass.-London-Don Mills, Ont., 1970. | es_ES |