- -

Sum connectedness in proximity spaces

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Sum connectedness in proximity spaces

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Singh, Beenu es_ES
dc.contributor.author Singh, Davinder es_ES
dc.date.accessioned 2021-10-06T06:58:10Z
dc.date.available 2021-10-06T06:58:10Z
dc.date.issued 2021-10-01
dc.identifier.issn 1576-9402
dc.identifier.uri http://hdl.handle.net/10251/173904
dc.description.abstract [EN] The notion of sum $ \delta $-connected proximity space which contains the category of $ \delta $-connected and locally $ \delta $-connected space is defined. Several characterizations of it are substantiated. Weaker forms of sum $ \delta $-connectedness are also studied. es_ES
dc.language Inglés es_ES
dc.publisher Universitat Politècnica de València es_ES
dc.relation.ispartof Applied General Topology es_ES
dc.rights Reconocimiento - No comercial - Sin obra derivada (by-nc-nd) es_ES
dc.subject Sum δ-connected es_ES
dc.subject Δ-connected es_ES
dc.subject Δ-component es_ES
dc.subject Locally δ-connected es_ES
dc.title Sum connectedness in proximity spaces es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.4995/agt.2021.14809
dc.rights.accessRights Abierto es_ES
dc.description.bibliographicCitation Singh, B.; Singh, D. (2021). Sum connectedness in proximity spaces. Applied General Topology. 22(2):345-354. https://doi.org/10.4995/agt.2021.14809 es_ES
dc.description.accrualMethod OJS es_ES
dc.relation.publisherversion https://doi.org/10.4995/agt.2021.14809 es_ES
dc.description.upvformatpinicio 345 es_ES
dc.description.upvformatpfin 354 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 22 es_ES
dc.description.issue 2 es_ES
dc.identifier.eissn 1989-4147
dc.relation.pasarela OJS\14809 es_ES
dc.description.references G. Bezhanishvili, Zero-dimensional proximities and zero-dimensional compactifications, Topology Appl. 156 (2009), 1496-1504. https://doi.org/10.1016/j.topol.2008.12.036 es_ES
dc.description.references R. Dimitrijević and Lj. Kočinac, On connectedness of proximity spaces, Matem. Vesnik 39 (1987), 27-35. es_ES
dc.description.references R. Dimitrijević and Lj. Kočinac, On treelike proximity spaces, Matem. Vesnik 39, no. 3 (1987), 257-261. es_ES
dc.description.references V. A. Efremovic, Infinitesimal spaces, Dokl. Akad. Nauk SSSR 76 (1951), 341-343 (in Russian). es_ES
dc.description.references V. A. Efremovic, The geometry of proximity I, Mat. Sb. 31 (1952), 189-200 (in Russian). es_ES
dc.description.references J. K. Kohli, A class of spaces containing all connected and all locally connected spaces, Math. Nachr. 82 (1978), 121-129. https://doi.org/10.1002/mana.19780820113 es_ES
dc.description.references S. G. Mrówka and W. J. Pervin, On uniform connectedness, Proc. Amer. Math. Soc. 15 (1964), 446-449. https://doi.org/10.2307/2034521 es_ES
dc.description.references S. Naimpally, Proximity Approach to Problems in Topology and Analysis, Oldenbourg Verlag, München, 2009. https://doi.org/10.1524/9783486598605 es_ES
dc.description.references S. Naimpally and B. D. Warrack, Proximity Spaces, Cambridge Univ. Press, 1970. https://doi.org/10.1017/CBO9780511569364 es_ES
dc.description.references Y. M. Smirnov, On completeness of proximity spaces I, Amer. Math. Soc. Trans. 38 (1964), 37-73. https://doi.org/10.1090/trans2/038/03 es_ES
dc.description.references Y. M. Smirnov, On proximity spaces, Amer. Math. Soc. Trans. 38 (1964), 5-35. es_ES
dc.description.references S. Willard, General Topology, Addison-Wesley Publishing Co., Reading, Mass.-London-Don Mills, Ont., 1970. es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem