Mostrar el registro sencillo del ítem
dc.contributor.author | Sharmah, Ankur | es_ES |
dc.contributor.author | Hazarika, Debajit | es_ES |
dc.date.accessioned | 2021-10-06T07:11:31Z | |
dc.date.available | 2021-10-06T07:11:31Z | |
dc.date.issued | 2021-10-01 | |
dc.identifier.issn | 1576-9402 | |
dc.identifier.uri | http://hdl.handle.net/10251/173911 | |
dc.description.abstract | [EN] In this paper, we obtain some results on the relationships between different ideal convergence modes namely, I K, I K∗ , I, K, I ∪ K and (I ∪K) ∗ . We introduce a topological space namely I K-sequential space and show that the class of I K-sequential spaces contain the sequential spaces. Further I K-notions of cluster points and limit points of a function are also introduced here. For a given sequence in a topological space X, we characterize the set of I K-cluster points of the sequence as closed subsets of X. | es_ES |
dc.description.sponsorship | The first author would like to thank the University Grants Comission (UGC) for awarding the junior research fellowship vide UGC Ref. No.: 1115/(CSIR-UGC NET DEC. 2017), India. | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | Universitat Politècnica de València | es_ES |
dc.relation.ispartof | Applied General Topology | es_ES |
dc.rights | Reconocimiento - No comercial - Sin obra derivada (by-nc-nd) | es_ES |
dc.subject | I-convergence | es_ES |
dc.subject | I K-convergence | es_ES |
dc.subject | I K∗ -convergence | es_ES |
dc.subject | I K-sequential space | es_ES |
dc.subject | I K-cluster point | es_ES |
dc.title | Further aspects of Ik-convergence in topological spaces | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.4995/agt.2021.14868 | |
dc.relation.projectID | info:eu-repo/grantAgreement/UGC//1115/CSIR-UGC NET DEC. 2017/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.description.bibliographicCitation | Sharmah, A.; Hazarika, D. (2021). Further aspects of Ik-convergence in topological spaces. Applied General Topology. 22(2):355-366. https://doi.org/10.4995/agt.2021.14868 | es_ES |
dc.description.accrualMethod | OJS | es_ES |
dc.relation.publisherversion | https://doi.org/10.4995/agt.2021.14868 | es_ES |
dc.description.upvformatpinicio | 355 | es_ES |
dc.description.upvformatpfin | 366 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 22 | es_ES |
dc.description.issue | 2 | es_ES |
dc.identifier.eissn | 1989-4147 | |
dc.relation.pasarela | OJS\14868 | es_ES |
dc.contributor.funder | University Grants Commission, India | es_ES |
dc.description.references | A. K. Banerjee and M. Paul, A note on IK and IK∗-convergence in topological spaces, arXiv:1807.11772v1 [math.GN], 2018. | es_ES |
dc.description.references | B. K. Lahiri and P. Das, I and I⋆-convergence of nets, Real Anal. Exchange 33 (2007), 431-442. https://doi.org/10.14321/realanalexch.33.2.0431 | es_ES |
dc.description.references | B. K. Lahiri and P. Das, I and I⋆-convergence in topological spaces, Math. Bohemica 130 (2005), 153-160. https://doi.org/10.21136/MB.2005.134133 | es_ES |
dc.description.references | H. Fast, Sur la convergence statistique, Colloq. Math, 2(1951), 241-244. https://doi.org/10.4064/cm-2-3-4-241-244 | es_ES |
dc.description.references | K. P. Hart, J. Nagata and J. E. Vaughan. Encyclopedia of General Topology, Elsevier Science Publications, Amsterdam-Netherlands, 2004. | es_ES |
dc.description.references | M. Macaj and M. Sleziak, IK-convergence, Real Anal. Exchange 36 (2011), 177-194. https://doi.org/10.14321/realanalexch.36.1.0177 | es_ES |
dc.description.references | P. Das, M. Sleziak and V. Tomac, IK-Cauchy functions, Topology Appl. 173 (2014), 9-27. https://doi.org/10.1016/j.topol.2014.05.008 | es_ES |
dc.description.references | P. Das, S. Dasgupta, S. Glab and M. Bienias, Certain aspects of ideal convergence in topological spaces, Topology Appl. 275 (2020), 107005. https://doi.org/10.1016/j.topol.2019.107005 | es_ES |
dc.description.references | P. Das, S. Sengupta, J and Supina, IK-convergence of sequence of functions, Math. Slovaca 69, no. 5(2019), 1137-1148. https://doi.org/10.1515/ms-2017-0296 | es_ES |
dc.description.references | P. Halmos and S. Givant, Introduction to Boolean Algebras, Undergraduate Texts in Mathematics, Springer, New York, 2009. https://doi.org/10.1007/978-0-387-68436-9 | es_ES |
dc.description.references | P. Kostyrko, T. Salat and W. Wilczynski, I-convergence, Real Anal. Exchange 26 (2001), 669-685. https://doi.org/10.2307/44154069 | es_ES |
dc.description.references | S. K. Pal, I-sequential topological spaces, Appl. Math. E-Notes 14 (2014), 236-241. | es_ES |
dc.description.references | X. Zhou, L. Liu and L. Shou, On topological space defined by I-convergence, Bull. Iranian Math. Soc. 46 (2020), 675-692. https://doi.org/10.1007/s41980-019-00284-6 | es_ES |