- -

Further aspects of Ik-convergence in topological spaces

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Further aspects of Ik-convergence in topological spaces

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Sharmah, Ankur es_ES
dc.contributor.author Hazarika, Debajit es_ES
dc.date.accessioned 2021-10-06T07:11:31Z
dc.date.available 2021-10-06T07:11:31Z
dc.date.issued 2021-10-01
dc.identifier.issn 1576-9402
dc.identifier.uri http://hdl.handle.net/10251/173911
dc.description.abstract [EN] In this paper, we obtain some results on the relationships between different ideal convergence modes namely, I K, I K∗ , I, K, I ∪ K and (I ∪K) ∗ . We introduce a topological space namely I K-sequential space and show that the class of I K-sequential spaces contain the sequential spaces. Further I K-notions of cluster points and limit points of a function are also introduced here. For a given sequence in a topological space X, we characterize the set of I K-cluster points of the sequence as closed subsets of X. es_ES
dc.description.sponsorship The first author would like to thank the University Grants Comission (UGC) for awarding the junior research fellowship vide UGC Ref. No.: 1115/(CSIR-UGC NET DEC. 2017), India. es_ES
dc.language Inglés es_ES
dc.publisher Universitat Politècnica de València es_ES
dc.relation.ispartof Applied General Topology es_ES
dc.rights Reconocimiento - No comercial - Sin obra derivada (by-nc-nd) es_ES
dc.subject I-convergence es_ES
dc.subject I K-convergence es_ES
dc.subject I K∗ -convergence es_ES
dc.subject I K-sequential space es_ES
dc.subject I K-cluster point es_ES
dc.title Further aspects of Ik-convergence in topological spaces es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.4995/agt.2021.14868
dc.relation.projectID info:eu-repo/grantAgreement/UGC//1115/CSIR-UGC NET DEC. 2017/ es_ES
dc.rights.accessRights Abierto es_ES
dc.description.bibliographicCitation Sharmah, A.; Hazarika, D. (2021). Further aspects of Ik-convergence in topological spaces. Applied General Topology. 22(2):355-366. https://doi.org/10.4995/agt.2021.14868 es_ES
dc.description.accrualMethod OJS es_ES
dc.relation.publisherversion https://doi.org/10.4995/agt.2021.14868 es_ES
dc.description.upvformatpinicio 355 es_ES
dc.description.upvformatpfin 366 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 22 es_ES
dc.description.issue 2 es_ES
dc.identifier.eissn 1989-4147
dc.relation.pasarela OJS\14868 es_ES
dc.contributor.funder University Grants Commission, India es_ES
dc.description.references A. K. Banerjee and M. Paul, A note on IK and IK∗-convergence in topological spaces, arXiv:1807.11772v1 [math.GN], 2018. es_ES
dc.description.references B. K. Lahiri and P. Das, I and I⋆-convergence of nets, Real Anal. Exchange 33 (2007), 431-442. https://doi.org/10.14321/realanalexch.33.2.0431 es_ES
dc.description.references B. K. Lahiri and P. Das, I and I⋆-convergence in topological spaces, Math. Bohemica 130 (2005), 153-160. https://doi.org/10.21136/MB.2005.134133 es_ES
dc.description.references H. Fast, Sur la convergence statistique, Colloq. Math, 2(1951), 241-244. https://doi.org/10.4064/cm-2-3-4-241-244 es_ES
dc.description.references K. P. Hart, J. Nagata and J. E. Vaughan. Encyclopedia of General Topology, Elsevier Science Publications, Amsterdam-Netherlands, 2004. es_ES
dc.description.references M. Macaj and M. Sleziak, IK-convergence, Real Anal. Exchange 36 (2011), 177-194. https://doi.org/10.14321/realanalexch.36.1.0177 es_ES
dc.description.references P. Das, M. Sleziak and V. Tomac, IK-Cauchy functions, Topology Appl. 173 (2014), 9-27. https://doi.org/10.1016/j.topol.2014.05.008 es_ES
dc.description.references P. Das, S. Dasgupta, S. Glab and M. Bienias, Certain aspects of ideal convergence in topological spaces, Topology Appl. 275 (2020), 107005. https://doi.org/10.1016/j.topol.2019.107005 es_ES
dc.description.references P. Das, S. Sengupta, J and Supina, IK-convergence of sequence of functions, Math. Slovaca 69, no. 5(2019), 1137-1148. https://doi.org/10.1515/ms-2017-0296 es_ES
dc.description.references P. Halmos and S. Givant, Introduction to Boolean Algebras, Undergraduate Texts in Mathematics, Springer, New York, 2009. https://doi.org/10.1007/978-0-387-68436-9 es_ES
dc.description.references P. Kostyrko, T. Salat and W. Wilczynski, I-convergence, Real Anal. Exchange 26 (2001), 669-685. https://doi.org/10.2307/44154069 es_ES
dc.description.references S. K. Pal, I-sequential topological spaces, Appl. Math. E-Notes 14 (2014), 236-241. es_ES
dc.description.references X. Zhou, L. Liu and L. Shou, On topological space defined by I-convergence, Bull. Iranian Math. Soc. 46 (2020), 675-692. https://doi.org/10.1007/s41980-019-00284-6 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem