- -

Further aspects of Ik-convergence in topological spaces

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Further aspects of Ik-convergence in topological spaces

Mostrar el registro completo del ítem

Sharmah, A.; Hazarika, D. (2021). Further aspects of Ik-convergence in topological spaces. Applied General Topology. 22(2):355-366. https://doi.org/10.4995/agt.2021.14868

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/173911

Ficheros en el ítem

Metadatos del ítem

Título: Further aspects of Ik-convergence in topological spaces
Autor: Sharmah, Ankur Hazarika, Debajit
Fecha difusión:
Resumen:
[EN] In this paper, we obtain some results on the relationships between different ideal convergence modes namely, I K, I K∗ , I, K, I ∪ K and (I ∪K) ∗ . We introduce a topological space namely I K-sequential space and show ...[+]
Palabras clave: I-convergence , I K-convergence , I K∗ -convergence , I K-sequential space , I K-cluster point
Derechos de uso: Reconocimiento - No comercial - Sin obra derivada (by-nc-nd)
Fuente:
Applied General Topology. (issn: 1576-9402 ) (eissn: 1989-4147 )
DOI: 10.4995/agt.2021.14868
Editorial:
Universitat Politècnica de València
Versión del editor: https://doi.org/10.4995/agt.2021.14868
Código del Proyecto:
info:eu-repo/grantAgreement/UGC//1115/CSIR-UGC NET DEC. 2017/
Agradecimientos:
The first author would like to thank the University Grants Comission (UGC) for awarding the junior research fellowship vide UGC Ref. No.: 1115/(CSIR-UGC NET DEC. 2017), India.
Tipo: Artículo

References

A. K. Banerjee and M. Paul, A note on IK and IK∗-convergence in topological spaces, arXiv:1807.11772v1 [math.GN], 2018.

B. K. Lahiri and P. Das, I and I⋆-convergence of nets, Real Anal. Exchange 33 (2007), 431-442. https://doi.org/10.14321/realanalexch.33.2.0431

B. K. Lahiri and P. Das, I and I⋆-convergence in topological spaces, Math. Bohemica 130 (2005), 153-160. https://doi.org/10.21136/MB.2005.134133 [+]
A. K. Banerjee and M. Paul, A note on IK and IK∗-convergence in topological spaces, arXiv:1807.11772v1 [math.GN], 2018.

B. K. Lahiri and P. Das, I and I⋆-convergence of nets, Real Anal. Exchange 33 (2007), 431-442. https://doi.org/10.14321/realanalexch.33.2.0431

B. K. Lahiri and P. Das, I and I⋆-convergence in topological spaces, Math. Bohemica 130 (2005), 153-160. https://doi.org/10.21136/MB.2005.134133

H. Fast, Sur la convergence statistique, Colloq. Math, 2(1951), 241-244. https://doi.org/10.4064/cm-2-3-4-241-244

K. P. Hart, J. Nagata and J. E. Vaughan. Encyclopedia of General Topology, Elsevier Science Publications, Amsterdam-Netherlands, 2004.

M. Macaj and M. Sleziak, IK-convergence, Real Anal. Exchange 36 (2011), 177-194. https://doi.org/10.14321/realanalexch.36.1.0177

P. Das, M. Sleziak and V. Tomac, IK-Cauchy functions, Topology Appl. 173 (2014), 9-27. https://doi.org/10.1016/j.topol.2014.05.008

P. Das, S. Dasgupta, S. Glab and M. Bienias, Certain aspects of ideal convergence in topological spaces, Topology Appl. 275 (2020), 107005. https://doi.org/10.1016/j.topol.2019.107005

P. Das, S. Sengupta, J and Supina, IK-convergence of sequence of functions, Math. Slovaca 69, no. 5(2019), 1137-1148. https://doi.org/10.1515/ms-2017-0296

P. Halmos and S. Givant, Introduction to Boolean Algebras, Undergraduate Texts in Mathematics, Springer, New York, 2009. https://doi.org/10.1007/978-0-387-68436-9

P. Kostyrko, T. Salat and W. Wilczynski, I-convergence, Real Anal. Exchange 26 (2001), 669-685. https://doi.org/10.2307/44154069

S. K. Pal, I-sequential topological spaces, Appl. Math. E-Notes 14 (2014), 236-241.

X. Zhou, L. Liu and L. Shou, On topological space defined by I-convergence, Bull. Iranian Math. Soc. 46 (2020), 675-692. https://doi.org/10.1007/s41980-019-00284-6

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem