- -

Lipschitz integral operators represented by vector measures

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Lipschitz integral operators represented by vector measures

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Dahia, Elhadj es_ES
dc.contributor.author Hamidi, Khaled es_ES
dc.date.accessioned 2021-10-06T07:14:08Z
dc.date.available 2021-10-06T07:14:08Z
dc.date.issued 2021-10-01
dc.identifier.issn 1576-9402
dc.identifier.uri http://hdl.handle.net/10251/173912
dc.description.abstract [EN] In this paper we introduce the concept of Lipschitz Pietsch-p-integral mappings, (1≤p≤∞), between a metric space and a Banach space. We represent these mappings by an integral with respect to a vectormeasure defined on a suitable compact Hausdorff space, obtaining in this way a rich factorization theory through the classical Banach spaces C(K), L_p(μ,K) and L_∞(μ,K). Also we show that this type of operators fits in the theory of composition Banach Lipschitz operator ideals. For p=∞, we characterize the Lipschitz Pietsch-∞-integral mappings by a factorization schema through a weakly compact operator. Finally, the relationship between these mappings and some well known Lipschitz operators is given. es_ES
dc.description.sponsorship We would like to thank the referee for his/her careful reading and useful suggestions. Also, we acknowledge with thanks the support of the general direction of scientific research and technological development (DGRSDT), Algeria. es_ES
dc.language Inglés es_ES
dc.publisher Universitat Politècnica de València es_ES
dc.relation.ispartof Applied General Topology es_ES
dc.rights Reconocimiento - No comercial - Sin obra derivada (by-nc-nd) es_ES
dc.subject Lipschitz Pietsch-p-integral operators es_ES
dc.subject Lipschitz strictly p-integral operators es_ES
dc.subject Vector measure representation es_ES
dc.title Lipschitz integral operators represented by vector measures es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.4995/agt.2021.15061
dc.rights.accessRights Abierto es_ES
dc.description.bibliographicCitation Dahia, E.; Hamidi, K. (2021). Lipschitz integral operators represented by vector measures. Applied General Topology. 22(2):367-383. https://doi.org/10.4995/agt.2021.15061 es_ES
dc.description.accrualMethod OJS es_ES
dc.relation.publisherversion https://doi.org/10.4995/agt.2021.15061 es_ES
dc.description.upvformatpinicio 367 es_ES
dc.description.upvformatpfin 383 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 22 es_ES
dc.description.issue 2 es_ES
dc.identifier.eissn 1989-4147
dc.relation.pasarela OJS\15061 es_ES
dc.contributor.funder Direction Générale de la Recherche Scientifique et du Développement Technologique, Argelia
dc.description.references D. Achour, P. Rueda, E. A. Sánchez-Pérez and R. Yahi, Lipschitz operator ideals and the approximation property, J. Math. Anal. Appl. 436 (2016), 217-236. https://doi.org/10.1016/j.jmaa.2015.11.050 es_ES
dc.description.references R. F. Arens and J. Eels Jr., On embedding uniform and topological spaces, Pacific J. Math 6 (1956), 397-403. https://doi.org/10.2140/pjm.1956.6.397 es_ES
dc.description.references A. Belacel and D. Chen, Lipschitz (p,r,s)-integral operators and Lipschitz (p,r,s)-nuclear operators, J. Math. Anal. Appl. 461 (2018) 1115-1137. https://doi.org/10.1016/j.jmaa.2018.01.056 es_ES
dc.description.references Y. Benyamini and J. Lindenstrauss, Geometric nonlinear functional analysis, vol. 1, Amer. Math. Soc. Colloq. Publ., vol. 48, Amer. Math. Soc., Providence, RI, 2000. https://doi.org/10.1090/coll/048 es_ES
dc.description.references M. G. Cabrera-Padilla and A. Jiménez-Vargas, Lipschitz Grothendieck-integral operators, Banach J. Math. Anal. 9, no. 4 (2015), 34-57. https://doi.org/10.15352/bjma/09-4-3 es_ES
dc.description.references C. S. Cardassi, Strictly p-integral and p-nuclear operators, in: Analyse harmonique: Groupe de travail sur les espaces de Banach invariants par translation, Exp. II, Publ. Math. Orsay, 1989. es_ES
dc.description.references D. Chen and B. Zheng. Lipschitz p-integral operators and Lipschitz p-nuclear operators, Nonlinear Anal. 75 (2012), 5270-5282. https://doi.org/10.1016/j.na.2012.04.044 es_ES
dc.description.references R. Cilia and J. M. Gutiérrez, Asplund Operators and p-Integral Polynomials, Mediterr. J. Math. 10 (2013), 1435-1459. https://doi.org/10.1007/s00009-013-0250-8 es_ES
dc.description.references R. Cilia and J. M. Gutiérrez, Ideals of integral and r-factorable polynomials, Bol. Soc. Mat. Mexicana 14 (2008), 95-124. es_ES
dc.description.references J. Diestel, H. Jarchow and A. Tonge, Absolutely summing operators, Cambridge University Press, Cambridge, 1995. https://doi.org/10.1017/CBO9780511526138 es_ES
dc.description.references J. Diestel and J. J. Uhl, Jr., Vector Measures, Math. Surveys Monographs 15, American Mathematical Society, Providence RI, 1977. https://doi.org/10.1090/surv/015 es_ES
dc.description.references N. Dunford and J. T. Schwartz, Linear Operators, Part I:General Theory, J. Wiley & Sons, New York, 1988. es_ES
dc.description.references J. D. Farmer and W. B. Johnson, Lipschitz p-summing operators, Proc. Amer. Math. Soc. 137, no. 9 (2009), 2989-2995. https://doi.org/10.1090/S0002-9939-09-09865-7 es_ES
dc.description.references G. Godefroy, A survey on Lipschitz-free Banach spaces, Commentationes Mathematicae 55, no. 2 (2015), 89-118. https://doi.org/10.14708/cm.v55i2.1104 es_ES
dc.description.references A. Jiménez-Vargas, J. M. Sepulcre and M. Villegas-Vallecillos, Lipschitz compact operators, J. Math. Anal. Appl. 415 (2014), 889-901. https://doi.org/10.1016/j.jmaa.2014.02.012 es_ES
dc.description.references D. R. Lewis, Integration with respect to vector measures, Pacific J. Math. 33 (1970), 157-165. https://doi.org/10.2140/pjm.1970.33.157 es_ES
dc.description.references S. Okada, W. J. Ricker and E. A. Sánchez-Pérez, Optimal domain and integral extension of operators acting in function spaces, Operator theory: Adv. Appl., vol. 180, Birkhauser, Basel, 2008. https://doi.org/10.1007/978-3-7643-8648-1 es_ES
dc.description.references A. Persson and A. Pietsch.p-nuklear und p-integrale Abbildungen in Banach räumen, Studia Math. 33 (1969), 19-62. https://doi.org/10.4064/sm-33-1-19-62 es_ES
dc.description.references N. Weaver, Lipschitz Algebras, World Scientific Publishing Co., Singapore, 1999. https://doi.org/10.1142/4100 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem