Mostrar el registro sencillo del ítem
dc.contributor.author | Dahia, Elhadj | es_ES |
dc.contributor.author | Hamidi, Khaled | es_ES |
dc.date.accessioned | 2021-10-06T07:14:08Z | |
dc.date.available | 2021-10-06T07:14:08Z | |
dc.date.issued | 2021-10-01 | |
dc.identifier.issn | 1576-9402 | |
dc.identifier.uri | http://hdl.handle.net/10251/173912 | |
dc.description.abstract | [EN] In this paper we introduce the concept of Lipschitz Pietsch-p-integral mappings, (1≤p≤∞), between a metric space and a Banach space. We represent these mappings by an integral with respect to a vectormeasure defined on a suitable compact Hausdorff space, obtaining in this way a rich factorization theory through the classical Banach spaces C(K), L_p(μ,K) and L_∞(μ,K). Also we show that this type of operators fits in the theory of composition Banach Lipschitz operator ideals. For p=∞, we characterize the Lipschitz Pietsch-∞-integral mappings by a factorization schema through a weakly compact operator. Finally, the relationship between these mappings and some well known Lipschitz operators is given. | es_ES |
dc.description.sponsorship | We would like to thank the referee for his/her careful reading and useful suggestions. Also, we acknowledge with thanks the support of the general direction of scientific research and technological development (DGRSDT), Algeria. | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | Universitat Politècnica de València | es_ES |
dc.relation.ispartof | Applied General Topology | es_ES |
dc.rights | Reconocimiento - No comercial - Sin obra derivada (by-nc-nd) | es_ES |
dc.subject | Lipschitz Pietsch-p-integral operators | es_ES |
dc.subject | Lipschitz strictly p-integral operators | es_ES |
dc.subject | Vector measure representation | es_ES |
dc.title | Lipschitz integral operators represented by vector measures | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.4995/agt.2021.15061 | |
dc.rights.accessRights | Abierto | es_ES |
dc.description.bibliographicCitation | Dahia, E.; Hamidi, K. (2021). Lipschitz integral operators represented by vector measures. Applied General Topology. 22(2):367-383. https://doi.org/10.4995/agt.2021.15061 | es_ES |
dc.description.accrualMethod | OJS | es_ES |
dc.relation.publisherversion | https://doi.org/10.4995/agt.2021.15061 | es_ES |
dc.description.upvformatpinicio | 367 | es_ES |
dc.description.upvformatpfin | 383 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 22 | es_ES |
dc.description.issue | 2 | es_ES |
dc.identifier.eissn | 1989-4147 | |
dc.relation.pasarela | OJS\15061 | es_ES |
dc.contributor.funder | Direction Générale de la Recherche Scientifique et du Développement Technologique, Argelia | |
dc.description.references | D. Achour, P. Rueda, E. A. Sánchez-Pérez and R. Yahi, Lipschitz operator ideals and the approximation property, J. Math. Anal. Appl. 436 (2016), 217-236. https://doi.org/10.1016/j.jmaa.2015.11.050 | es_ES |
dc.description.references | R. F. Arens and J. Eels Jr., On embedding uniform and topological spaces, Pacific J. Math 6 (1956), 397-403. https://doi.org/10.2140/pjm.1956.6.397 | es_ES |
dc.description.references | A. Belacel and D. Chen, Lipschitz (p,r,s)-integral operators and Lipschitz (p,r,s)-nuclear operators, J. Math. Anal. Appl. 461 (2018) 1115-1137. https://doi.org/10.1016/j.jmaa.2018.01.056 | es_ES |
dc.description.references | Y. Benyamini and J. Lindenstrauss, Geometric nonlinear functional analysis, vol. 1, Amer. Math. Soc. Colloq. Publ., vol. 48, Amer. Math. Soc., Providence, RI, 2000. https://doi.org/10.1090/coll/048 | es_ES |
dc.description.references | M. G. Cabrera-Padilla and A. Jiménez-Vargas, Lipschitz Grothendieck-integral operators, Banach J. Math. Anal. 9, no. 4 (2015), 34-57. https://doi.org/10.15352/bjma/09-4-3 | es_ES |
dc.description.references | C. S. Cardassi, Strictly p-integral and p-nuclear operators, in: Analyse harmonique: Groupe de travail sur les espaces de Banach invariants par translation, Exp. II, Publ. Math. Orsay, 1989. | es_ES |
dc.description.references | D. Chen and B. Zheng. Lipschitz p-integral operators and Lipschitz p-nuclear operators, Nonlinear Anal. 75 (2012), 5270-5282. https://doi.org/10.1016/j.na.2012.04.044 | es_ES |
dc.description.references | R. Cilia and J. M. Gutiérrez, Asplund Operators and p-Integral Polynomials, Mediterr. J. Math. 10 (2013), 1435-1459. https://doi.org/10.1007/s00009-013-0250-8 | es_ES |
dc.description.references | R. Cilia and J. M. Gutiérrez, Ideals of integral and r-factorable polynomials, Bol. Soc. Mat. Mexicana 14 (2008), 95-124. | es_ES |
dc.description.references | J. Diestel, H. Jarchow and A. Tonge, Absolutely summing operators, Cambridge University Press, Cambridge, 1995. https://doi.org/10.1017/CBO9780511526138 | es_ES |
dc.description.references | J. Diestel and J. J. Uhl, Jr., Vector Measures, Math. Surveys Monographs 15, American Mathematical Society, Providence RI, 1977. https://doi.org/10.1090/surv/015 | es_ES |
dc.description.references | N. Dunford and J. T. Schwartz, Linear Operators, Part I:General Theory, J. Wiley & Sons, New York, 1988. | es_ES |
dc.description.references | J. D. Farmer and W. B. Johnson, Lipschitz p-summing operators, Proc. Amer. Math. Soc. 137, no. 9 (2009), 2989-2995. https://doi.org/10.1090/S0002-9939-09-09865-7 | es_ES |
dc.description.references | G. Godefroy, A survey on Lipschitz-free Banach spaces, Commentationes Mathematicae 55, no. 2 (2015), 89-118. https://doi.org/10.14708/cm.v55i2.1104 | es_ES |
dc.description.references | A. Jiménez-Vargas, J. M. Sepulcre and M. Villegas-Vallecillos, Lipschitz compact operators, J. Math. Anal. Appl. 415 (2014), 889-901. https://doi.org/10.1016/j.jmaa.2014.02.012 | es_ES |
dc.description.references | D. R. Lewis, Integration with respect to vector measures, Pacific J. Math. 33 (1970), 157-165. https://doi.org/10.2140/pjm.1970.33.157 | es_ES |
dc.description.references | S. Okada, W. J. Ricker and E. A. Sánchez-Pérez, Optimal domain and integral extension of operators acting in function spaces, Operator theory: Adv. Appl., vol. 180, Birkhauser, Basel, 2008. https://doi.org/10.1007/978-3-7643-8648-1 | es_ES |
dc.description.references | A. Persson and A. Pietsch.p-nuklear und p-integrale Abbildungen in Banach räumen, Studia Math. 33 (1969), 19-62. https://doi.org/10.4064/sm-33-1-19-62 | es_ES |
dc.description.references | N. Weaver, Lipschitz Algebras, World Scientific Publishing Co., Singapore, 1999. https://doi.org/10.1142/4100 | es_ES |