- -

Lipschitz integral operators represented by vector measures

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Lipschitz integral operators represented by vector measures

Mostrar el registro completo del ítem

Dahia, E.; Hamidi, K. (2021). Lipschitz integral operators represented by vector measures. Applied General Topology. 22(2):367-383. https://doi.org/10.4995/agt.2021.15061

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/173912

Ficheros en el ítem

Metadatos del ítem

Título: Lipschitz integral operators represented by vector measures
Autor: Dahia, Elhadj Hamidi, Khaled
Fecha difusión:
Resumen:
[EN] In this paper we introduce the concept of Lipschitz Pietsch-p-integral mappings, (1≤p≤∞), between a metric space and a Banach space. We represent these mappings by an integral with respect to a vectormeasure defined ...[+]
Palabras clave: Lipschitz Pietsch-p-integral operators , Lipschitz strictly p-integral operators , Vector measure representation
Derechos de uso: Reconocimiento - No comercial - Sin obra derivada (by-nc-nd)
Fuente:
Applied General Topology. (issn: 1576-9402 ) (eissn: 1989-4147 )
DOI: 10.4995/agt.2021.15061
Editorial:
Universitat Politècnica de València
Versión del editor: https://doi.org/10.4995/agt.2021.15061
Agradecimientos:
We would like to thank the referee for his/her careful reading and useful suggestions. Also, we acknowledge with thanks the support of the general direction of scientific research and technological development (DGRSDT), Algeria.[+]
Tipo: Artículo

References

D. Achour, P. Rueda, E. A. Sánchez-Pérez and R. Yahi, Lipschitz operator ideals and the approximation property, J. Math. Anal. Appl. 436 (2016), 217-236. https://doi.org/10.1016/j.jmaa.2015.11.050

R. F. Arens and J. Eels Jr., On embedding uniform and topological spaces, Pacific J. Math 6 (1956), 397-403. https://doi.org/10.2140/pjm.1956.6.397

A. Belacel and D. Chen, Lipschitz (p,r,s)-integral operators and Lipschitz (p,r,s)-nuclear operators, J. Math. Anal. Appl. 461 (2018) 1115-1137. https://doi.org/10.1016/j.jmaa.2018.01.056 [+]
D. Achour, P. Rueda, E. A. Sánchez-Pérez and R. Yahi, Lipschitz operator ideals and the approximation property, J. Math. Anal. Appl. 436 (2016), 217-236. https://doi.org/10.1016/j.jmaa.2015.11.050

R. F. Arens and J. Eels Jr., On embedding uniform and topological spaces, Pacific J. Math 6 (1956), 397-403. https://doi.org/10.2140/pjm.1956.6.397

A. Belacel and D. Chen, Lipschitz (p,r,s)-integral operators and Lipschitz (p,r,s)-nuclear operators, J. Math. Anal. Appl. 461 (2018) 1115-1137. https://doi.org/10.1016/j.jmaa.2018.01.056

Y. Benyamini and J. Lindenstrauss, Geometric nonlinear functional analysis, vol. 1, Amer. Math. Soc. Colloq. Publ., vol. 48, Amer. Math. Soc., Providence, RI, 2000. https://doi.org/10.1090/coll/048

M. G. Cabrera-Padilla and A. Jiménez-Vargas, Lipschitz Grothendieck-integral operators, Banach J. Math. Anal. 9, no. 4 (2015), 34-57. https://doi.org/10.15352/bjma/09-4-3

C. S. Cardassi, Strictly p-integral and p-nuclear operators, in: Analyse harmonique: Groupe de travail sur les espaces de Banach invariants par translation, Exp. II, Publ. Math. Orsay, 1989.

D. Chen and B. Zheng. Lipschitz p-integral operators and Lipschitz p-nuclear operators, Nonlinear Anal. 75 (2012), 5270-5282. https://doi.org/10.1016/j.na.2012.04.044

R. Cilia and J. M. Gutiérrez, Asplund Operators and p-Integral Polynomials, Mediterr. J. Math. 10 (2013), 1435-1459. https://doi.org/10.1007/s00009-013-0250-8

R. Cilia and J. M. Gutiérrez, Ideals of integral and r-factorable polynomials, Bol. Soc. Mat. Mexicana 14 (2008), 95-124.

J. Diestel, H. Jarchow and A. Tonge, Absolutely summing operators, Cambridge University Press, Cambridge, 1995. https://doi.org/10.1017/CBO9780511526138

J. Diestel and J. J. Uhl, Jr., Vector Measures, Math. Surveys Monographs 15, American Mathematical Society, Providence RI, 1977. https://doi.org/10.1090/surv/015

N. Dunford and J. T. Schwartz, Linear Operators, Part I:General Theory, J. Wiley & Sons, New York, 1988.

J. D. Farmer and W. B. Johnson, Lipschitz p-summing operators, Proc. Amer. Math. Soc. 137, no. 9 (2009), 2989-2995. https://doi.org/10.1090/S0002-9939-09-09865-7

G. Godefroy, A survey on Lipschitz-free Banach spaces, Commentationes Mathematicae 55, no. 2 (2015), 89-118. https://doi.org/10.14708/cm.v55i2.1104

A. Jiménez-Vargas, J. M. Sepulcre and M. Villegas-Vallecillos, Lipschitz compact operators, J. Math. Anal. Appl. 415 (2014), 889-901. https://doi.org/10.1016/j.jmaa.2014.02.012

D. R. Lewis, Integration with respect to vector measures, Pacific J. Math. 33 (1970), 157-165. https://doi.org/10.2140/pjm.1970.33.157

S. Okada, W. J. Ricker and E. A. Sánchez-Pérez, Optimal domain and integral extension of operators acting in function spaces, Operator theory: Adv. Appl., vol. 180, Birkhauser, Basel, 2008. https://doi.org/10.1007/978-3-7643-8648-1

A. Persson and A. Pietsch.p-nuklear und p-integrale Abbildungen in Banach räumen, Studia Math. 33 (1969), 19-62. https://doi.org/10.4064/sm-33-1-19-62

N. Weaver, Lipschitz Algebras, World Scientific Publishing Co., Singapore, 1999. https://doi.org/10.1142/4100

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem