- -

Small and large inductive dimension for ideal topological spaces

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Small and large inductive dimension for ideal topological spaces

Mostrar el registro completo del ítem

Sereti, F. (2021). Small and large inductive dimension for ideal topological spaces. Applied General Topology. 22(2):417-434. https://doi.org/10.4995/agt.2021.15231

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/173925

Ficheros en el ítem

Metadatos del ítem

Título: Small and large inductive dimension for ideal topological spaces
Autor: Sereti, Fotini
Fecha difusión:
Resumen:
[EN] Undoubtedly, the small inductive dimension, ind, and the large inductive dimension, Ind, for topological spaces have been studied extensively, developing an important field in Topology. Many of their properties have ...[+]
Palabras clave: Small inductive dimension , Large inductive dimension , Ideal topological space
Derechos de uso: Reconocimiento - No comercial - Sin obra derivada (by-nc-nd)
Fuente:
Applied General Topology. (issn: 1576-9402 ) (eissn: 1989-4147 )
DOI: 10.4995/agt.2021.15231
Editorial:
Universitat Politècnica de València
Versión del editor: https://doi.org/10.4995/agt.2021.15231
Tipo: Artículo

References

M. G. Charalambous, Dimension Theory, A Selection of Theorems and Counterexample, Springer Nature Switzerland AG, Cham, Switzerland, 2019. https://doi.org/10.1007/978-3-030-22232-1

M. Coornaert, Topological Dimension, In: Topological dimension and dynamical systems, Universitext. Springer, Cham, 2015. https://doi.org/10.1007/978-3-319-19794-4

J. Dontchev, M. Maximilian Ganster and D. Rose, Ideal resolvability, Topology Appl. 93, no. 1 (1999), 1-16. https://doi.org/10.1016/S0166-8641(97)00257-5 [+]
M. G. Charalambous, Dimension Theory, A Selection of Theorems and Counterexample, Springer Nature Switzerland AG, Cham, Switzerland, 2019. https://doi.org/10.1007/978-3-030-22232-1

M. Coornaert, Topological Dimension, In: Topological dimension and dynamical systems, Universitext. Springer, Cham, 2015. https://doi.org/10.1007/978-3-319-19794-4

J. Dontchev, M. Maximilian Ganster and D. Rose, Ideal resolvability, Topology Appl. 93, no. 1 (1999), 1-16. https://doi.org/10.1016/S0166-8641(97)00257-5

R. Engelking, General Topology, Heldermann Verlag, Berlin, 1989.

R. Engelking, Theory of Dimensions, Finite and Infinite, Heldermann Verlag, Berlin, 1995.

D. N. Georgiou, S. E. Han and A. C. Megaritis, Dimensions of the type dim and Alexandroff spaces, J. Egypt. Math. Soc. 21 (2013), 311-317. https://doi.org/10.1016/j.joems.2013.02.015

D. N. Georgiou and A. C. Megaritis, An algorithm of polynomial order for computing the covering dimension of a finite space, Applied Mathematics and Computation 231 (2014), 276-283. https://doi.org/10.1016/j.amc.2013.12.185

D. N. Georgiou and A. C. Megaritis, Covering dimension and finite spaces, Applied Mathematics and Computation 218 (2014), 3122-3130. https://doi.org/10.1016/j.amc.2011.08.040

D. N. Georgiou, A. C. Megaritis and S. Moshokoa, A computing procedure for the small inductive dimension of a finite $T_0$ space, Computational and Applied Mathematics 34, no. 1 (2015), 401-415. https://doi.org/10.1007/s40314-014-0125-z

D. N. Georgiou, A. C. Megaritis and S. Moshokoa, Small inductive dimension and Alexandroff topological spaces, Topology Appl. 168 (2014), 103-119. https://doi.org/10.1016/j.topol.2014.02.014

D. N. Georgiou, A. C. Megaritis and F. Sereti, A study of the quasi covering dimension for finite spaces through matrix theory, Hacettepe Journal of Mathematics and Statistics 46, no. 1 (2017), 111-125.

D. N. Georgiou, A. C. Megaritis and F. Sereti, A study of the quasi covering dimension of Alexandroff countable spaces using matrices, Filomat 32, no. 18 (2018), 6327-6337. https://doi.org/10.2298/FIL1818327G

D. N. Georgiou, A. C. Megaritis and F. Sereti, A topological dimension greater than or equal to the classical covering dimension, Houston Journal of Mathematics 43, no. 1 (2017), 283-298.

T. R. Hamlett, D. Rose and D. Janković, Paracompactness with respect to an ideal, Internat. J. Math. Math. Sci. 20, no. 3 (1997), 433-442. https://doi.org/10.1155/S0161171297000598

D. Janković and T. R. Hamlett, New topologies from old via ideals, Amer. Math. Monthly 97, no. 4 (1990), 295-310. https://doi.org/10.1080/00029890.1990.11995593

K. Kuratowski, Topologie I, Monografie Matematyczne 3, Warszawa-Lwów, 1933.

A. C. Megaritis, Covering dimension and ideal topological spaces, Quaestiones Mathematicae, to appear. https://doi.org/10.2989/16073606.2020.1851309

A. R. Pears, Dimension theory of general spaces, Cambridge University Press, Cambridge, 1975.

P. Samuels, A topology formed from a given topology and ideal, J. London Math. Soc. 10, no. 4 (1975), 409-416. https://doi.org/10.1112/jlms/s2-10.4.409

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem