- -

Small and large inductive dimension for ideal topological spaces

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Small and large inductive dimension for ideal topological spaces

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Sereti, Fotini es_ES
dc.date.accessioned 2021-10-06T07:41:56Z
dc.date.available 2021-10-06T07:41:56Z
dc.date.issued 2021-10-01
dc.identifier.issn 1576-9402
dc.identifier.uri http://hdl.handle.net/10251/173925
dc.description.abstract [EN] Undoubtedly, the small inductive dimension, ind, and the large inductive dimension, Ind, for topological spaces have been studied extensively, developing an important field in Topology. Many of their properties have been studied in details (see for example [1,4,5,9,10,18]). However, researches for dimensions in the field of ideal topological spaces are in an initial stage. The covering dimension, dim, is an exception of this fact, since it is a meaning of dimension, which has been studied for such spaces in [17]. In this paper, based on the notions of the small and large inductive dimension, new types of dimensions for ideal topological spaces are studied. They are called *-small and *-large inductive dimension, ideal small and ideal large inductive dimension. Basic properties of these dimensions are studied and relations between these dimensions are investigated. es_ES
dc.language Inglés es_ES
dc.publisher Universitat Politècnica de València es_ES
dc.relation.ispartof Applied General Topology es_ES
dc.rights Reconocimiento - No comercial - Sin obra derivada (by-nc-nd) es_ES
dc.subject Small inductive dimension es_ES
dc.subject Large inductive dimension es_ES
dc.subject Ideal topological space es_ES
dc.title Small and large inductive dimension for ideal topological spaces es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.4995/agt.2021.15231
dc.rights.accessRights Abierto es_ES
dc.description.bibliographicCitation Sereti, F. (2021). Small and large inductive dimension for ideal topological spaces. Applied General Topology. 22(2):417-434. https://doi.org/10.4995/agt.2021.15231 es_ES
dc.description.accrualMethod OJS es_ES
dc.relation.publisherversion https://doi.org/10.4995/agt.2021.15231 es_ES
dc.description.upvformatpinicio 417 es_ES
dc.description.upvformatpfin 434 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 22 es_ES
dc.description.issue 2 es_ES
dc.identifier.eissn 1989-4147
dc.relation.pasarela OJS\15231 es_ES
dc.description.references M. G. Charalambous, Dimension Theory, A Selection of Theorems and Counterexample, Springer Nature Switzerland AG, Cham, Switzerland, 2019. https://doi.org/10.1007/978-3-030-22232-1 es_ES
dc.description.references M. Coornaert, Topological Dimension, In: Topological dimension and dynamical systems, Universitext. Springer, Cham, 2015. https://doi.org/10.1007/978-3-319-19794-4 es_ES
dc.description.references J. Dontchev, M. Maximilian Ganster and D. Rose, Ideal resolvability, Topology Appl. 93, no. 1 (1999), 1-16. https://doi.org/10.1016/S0166-8641(97)00257-5 es_ES
dc.description.references R. Engelking, General Topology, Heldermann Verlag, Berlin, 1989. es_ES
dc.description.references R. Engelking, Theory of Dimensions, Finite and Infinite, Heldermann Verlag, Berlin, 1995. es_ES
dc.description.references D. N. Georgiou, S. E. Han and A. C. Megaritis, Dimensions of the type dim and Alexandroff spaces, J. Egypt. Math. Soc. 21 (2013), 311-317. https://doi.org/10.1016/j.joems.2013.02.015 es_ES
dc.description.references D. N. Georgiou and A. C. Megaritis, An algorithm of polynomial order for computing the covering dimension of a finite space, Applied Mathematics and Computation 231 (2014), 276-283. https://doi.org/10.1016/j.amc.2013.12.185 es_ES
dc.description.references D. N. Georgiou and A. C. Megaritis, Covering dimension and finite spaces, Applied Mathematics and Computation 218 (2014), 3122-3130. https://doi.org/10.1016/j.amc.2011.08.040 es_ES
dc.description.references D. N. Georgiou, A. C. Megaritis and S. Moshokoa, A computing procedure for the small inductive dimension of a finite $T_0$ space, Computational and Applied Mathematics 34, no. 1 (2015), 401-415. https://doi.org/10.1007/s40314-014-0125-z es_ES
dc.description.references D. N. Georgiou, A. C. Megaritis and S. Moshokoa, Small inductive dimension and Alexandroff topological spaces, Topology Appl. 168 (2014), 103-119. https://doi.org/10.1016/j.topol.2014.02.014 es_ES
dc.description.references D. N. Georgiou, A. C. Megaritis and F. Sereti, A study of the quasi covering dimension for finite spaces through matrix theory, Hacettepe Journal of Mathematics and Statistics 46, no. 1 (2017), 111-125. es_ES
dc.description.references D. N. Georgiou, A. C. Megaritis and F. Sereti, A study of the quasi covering dimension of Alexandroff countable spaces using matrices, Filomat 32, no. 18 (2018), 6327-6337. https://doi.org/10.2298/FIL1818327G es_ES
dc.description.references D. N. Georgiou, A. C. Megaritis and F. Sereti, A topological dimension greater than or equal to the classical covering dimension, Houston Journal of Mathematics 43, no. 1 (2017), 283-298. es_ES
dc.description.references T. R. Hamlett, D. Rose and D. Janković, Paracompactness with respect to an ideal, Internat. J. Math. Math. Sci. 20, no. 3 (1997), 433-442. https://doi.org/10.1155/S0161171297000598 es_ES
dc.description.references D. Janković and T. R. Hamlett, New topologies from old via ideals, Amer. Math. Monthly 97, no. 4 (1990), 295-310. https://doi.org/10.1080/00029890.1990.11995593 es_ES
dc.description.references K. Kuratowski, Topologie I, Monografie Matematyczne 3, Warszawa-Lwów, 1933. es_ES
dc.description.references A. C. Megaritis, Covering dimension and ideal topological spaces, Quaestiones Mathematicae, to appear. https://doi.org/10.2989/16073606.2020.1851309 es_ES
dc.description.references A. R. Pears, Dimension theory of general spaces, Cambridge University Press, Cambridge, 1975. es_ES
dc.description.references P. Samuels, A topology formed from a given topology and ideal, J. London Math. Soc. 10, no. 4 (1975), 409-416. https://doi.org/10.1112/jlms/s2-10.4.409 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem