- -

Index boundedness and uniform connectedness of space of the G-permutation degree

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Index boundedness and uniform connectedness of space of the G-permutation degree

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Beshimov, R. B. es_ES
dc.contributor.author Georgiou, Dimitrios N. es_ES
dc.contributor.author Zhuraev, R. M. es_ES
dc.date.accessioned 2021-10-06T07:46:04Z
dc.date.available 2021-10-06T07:46:04Z
dc.date.issued 2021-10-01
dc.identifier.issn 1576-9402
dc.identifier.uri http://hdl.handle.net/10251/173928
dc.description.abstract [EN] In this paper the properties of space of the G-permutation degree, like: weight, uniform connectedness and index boundedness are studied. It is proved that: (1) If (X, U) is a uniform space, then the mapping π s n, G : (X n , U n ) → (SP n GX, SP n GU) is uniformly continuous and uniformly open, moreover w (U) = w (SP n GU); (2) If the mapping f : (X, U) → (Y, V) is a uniformly continuous (open), then the mapping SP n Gf : (SP n GX, SP n GU) → (SP n GY, SP n GV) is also uniformly continuous (open); (3) If the uniform space (X, U) is uniformly connected, then the uniform space (SP n GX, SP n GU) is also uniformly connected. es_ES
dc.language Inglés es_ES
dc.publisher Universitat Politècnica de València es_ES
dc.relation.ispartof Applied General Topology es_ES
dc.rights Reconocimiento - No comercial - Sin obra derivada (by-nc-nd) es_ES
dc.subject G-permutation degree space es_ES
dc.subject Uniform space es_ES
dc.subject Uniform connectedness es_ES
dc.subject Index boundedness of uniform space es_ES
dc.subject Uniform continuity es_ES
dc.title Index boundedness and uniform connectedness of space of the G-permutation degree es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.4995/agt.2021.15566
dc.rights.accessRights Abierto es_ES
dc.description.bibliographicCitation Beshimov, RB.; Georgiou, DN.; Zhuraev, RM. (2021). Index boundedness and uniform connectedness of space of the G-permutation degree. Applied General Topology. 22(2):447-459. https://doi.org/10.4995/agt.2021.15566 es_ES
dc.description.accrualMethod OJS es_ES
dc.relation.publisherversion https://doi.org/10.4995/agt.2021.15566 es_ES
dc.description.upvformatpinicio 447 es_ES
dc.description.upvformatpfin 459 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 22 es_ES
dc.description.issue 2 es_ES
dc.identifier.eissn 1989-4147
dc.relation.pasarela OJS\15566 es_ES
dc.description.references T. Banakh, Topological spaces with ith an ωω-base, Dissertationes Mathematicae, Warszawa, 2019. https://doi.org/10.4064/dm762-4-2018 es_ES
dc.description.references R. B. Beshimov, Nonincrease of density and weak density under weakly normal functors, Mathematical Notes 84 (2008), 493-497. https://doi.org/10.1134/S0001434608090216 es_ES
dc.description.references R. B. Beshimov, Some properties of the functor Oβ, Journal of Mathematical Sciences 133, no. 5 (2006), 1599-1601. https://doi.org/10.1007/s10958-006-0070-5 es_ES
dc.description.references R. B. Beshimov and N. K. Mamadaliev, Categorical and topological properties of the functor of Radon functionals, Topology and its Applications 275 (2020), 1-11. https://doi.org/10.1016/j.topol.2019.106998 es_ES
dc.description.references R. B. Beshimov and N. K. Mamadaliev, On the functor of semiadditive τ-smooth functionals, Topology and its Applications 221, no. 3 (2017), 167-177. https://doi.org/10.1016/j.topol.2017.02.037 es_ES
dc.description.references R. B. Beshimov, N. K. Mamadaliev, Sh. Kh. Eshtemirova, Categorical and cardinal properties of hyperspaces with a finite number of components, Journal of Mathematical Sciences 245, no. 3 (2020), 390-397. https://doi.org/10.1007/s10958-020-04701-8 es_ES
dc.description.references R. B. Beshimov and R. M. Zhuraev, Some properties of a connected topological group, Mathematics and Statistics 7, no. 2 (2019), 45-49. https://doi.org/10.13189/ms.2019.070203 es_ES
dc.description.references A. A. Borubaev and A. A. Chekeev, On completions of topological groups with respect to the maximal uniform structure and factorization of uniform homomorphisms with respect to uniform weight and dimension, Topology and its Applications 107, no. 1-2 (2000), 25-37. https://doi.org/10.1016/S0166-8641(99)00120-0 es_ES
dc.description.references A. A. Borubaev and A. A. Chekeev, On uniform topology and its applications, TWMS J. Pure and Appl. Math. 6, no. 2 (2015), 165-179. es_ES
dc.description.references R. Engelking, General topology, Berlin: Helderman, 1986. es_ES
dc.description.references V. V. Fedorchuk, Covariant functors in the category of compacts, absolute ute retracts and Q-manifolds, Uspekhi Matematicheskikh Nauk 36, no. 3 (1981), 177-195. https://doi.org/10.1070/RM1981v036n03ABEH004251 es_ES
dc.description.references V. V. Fedorchuk and H. A. Kunzi, Uniformly open mappings and uniform embeddings of function spaces, Topology and its Applications 61 (1995), 61-84. https://doi.org/10.1016/0166-8641(94)00023-V es_ES
dc.description.references V. V. Fedorchuk and V. V. Filippov, Topology of hyperspaces and its applications, 4 Mathematica, cybernetica, Moscow, 48 p., 1989 (in Russian). es_ES
dc.description.references G. Itzkowitz, S. Rothman, H. Strassberg and T. S. Wu, Characterization of equivalent uniformities in topological groups, Topology and its Applications 47 (1992), 9-34. https://doi.org/10.1016/0166-8641(92)90112-D es_ES
dc.description.references I. M. James, Introduction to Uniform Spaces, London Mathematical Society, Lecture Notes Series 144, Cambridge University Press, Cambridge, 1990. es_ES
dc.description.references J. L. Kelley, General Topology, Van Nostrand Reinhold, Princeton, NJ, 1955. es_ES
dc.description.references L. Holá and L. D. R. Kocinac, Uniform boundedness in function spaces, Topology and its Applications 241 (2018), 242-251. https://doi.org/10.1016/j.topol.2018.04.006 es_ES
dc.description.references E. Michael, Topologies on spaces of subsets, Trans. Amer. Math. Soc. 71 (1951), 152-182. https://doi.org/10.1090/S0002-9947-1951-0042109-4 es_ES
dc.description.references T. N. Radul, On the functor of order-preserving functionals, Comment. Math. Univ. Carol. 39, no. 3 (1998), 609-615. es_ES
dc.description.references T. K. Yuldashev and F. G. Mukhamadiev, The local density and the local weak density in the space of permutation degree and in Hattorri space, URAL Mathematical Journal 6, no. 2 (2020), 108-126. https://doi.org/10.15826/umj.2020.2.011 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem