Mostrar el registro sencillo del ítem
dc.contributor.author | Cesareo, Ambra | es_ES |
dc.contributor.author | Biffi, Emilia | es_ES |
dc.contributor.author | Cuesta Frau, David | es_ES |
dc.contributor.author | D'Angelo, Maria G. | es_ES |
dc.contributor.author | Aliverti, Andrea | es_ES |
dc.date.accessioned | 2021-11-05T10:17:43Z | |
dc.date.available | 2021-11-05T10:17:43Z | |
dc.date.issued | 2020-04 | es_ES |
dc.identifier.issn | 0140-0118 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/176071 | |
dc.description.abstract | [EN] Continuous monitoring of breathing frequency (f(B)) could foster early prediction of adverse clinical effects and exacerbation of medical conditions. Current solutions are invasive or obtrusive and thus not suitable for prolonged monitoring outside the clinical setting. Previous studies demonstrated the feasibility of deriving f(B) by measuring inclination changes due to breathing using accelerometers or inertial measurement units (IMU). Nevertheless, few studies faced the problem of motion artifacts that limit the use of IMU-based systems for continuous monitoring. Moreover, few attempts have been made to move towards real portability and wearability of such devices. This paper proposes a wearable IMU-based device that communicates via Bluetooth with a smartphone, uploading data on a web server to allow remote monitoring. Two IMU units are placed on thorax and abdomen to record breathing-related movements, while a third IMU unit records body/trunk motion and is used as reference. The performance of the proposed system was evaluated in terms of long-acquisition-platform reliability showing good performances in terms of duration and data loss amount. The device was preliminarily tested in terms of accuracy in breathing temporal parameter measurement, in static condition, during postural changes, and during slight indoor activities showing favorable comparison against the reference methods (mean error breathing frequency < 5%). Graphical abstract Proof of concept of a wearable, wireless, modular respiratory Holter based on inertial measurement units (IMUS) for the continuous breathing pattern monitoring through the detection of chest wall breathing-related movements. | es_ES |
dc.description.sponsorship | The authors thank "Fondazione per la Ricerca Scientifica Termale grants" for the financial support and all the participants. A special thanks to Davide Redaelli for the support in the realization of the housing boxes, from CAD modeling to 3D printing. We also want to thank Prof.ssa Galli and Dr. Nicola Cau, of the "Posture and Movement Analysis Laboratory "Luigi Divieti" of the Department of Bioengineering of the Politecnico di Milano, for their willingness and kindness to lend us the K5 Cosmed system and assist us during the acquisitions | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | Springer-Verlag | es_ES |
dc.relation.ispartof | Medical & Biological Engineering & Computing | es_ES |
dc.rights | Reserva de todos los derechos | es_ES |
dc.subject | Monitoring | es_ES |
dc.subject | Physiologic | es_ES |
dc.subject | Respiration | es_ES |
dc.subject | Wearable electronic devices | es_ES |
dc.subject | Mobile health units | es_ES |
dc.subject | Optoelectronic plethysmography | es_ES |
dc.subject.classification | ARQUITECTURA Y TECNOLOGIA DE COMPUTADORES | es_ES |
dc.title | A novel acquisition platform for long-term breathing frequency monitoring based on inertial measurement units | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1007/s11517-020-02125-9 | es_ES |
dc.rights.accessRights | Cerrado | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Informática de Sistemas y Computadores - Departament d'Informàtica de Sistemes i Computadors | es_ES |
dc.description.bibliographicCitation | Cesareo, A.; Biffi, E.; Cuesta Frau, D.; D'angelo, MG.; Aliverti, A. (2020). A novel acquisition platform for long-term breathing frequency monitoring based on inertial measurement units. Medical & Biological Engineering & Computing. 58:785-804. https://doi.org/10.1007/s11517-020-02125-9 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.1007/s11517-020-02125-9 | es_ES |
dc.description.upvformatpinicio | 785 | es_ES |
dc.description.upvformatpfin | 804 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 58 | es_ES |
dc.identifier.pmid | 32002753 | es_ES |
dc.relation.pasarela | S\401357 | es_ES |
dc.contributor.funder | Fondazione per la Ricerca Scientifica Termale | es_ES |
dc.description.references | Aliverti A, Pedotti A (2002) Opto-electronic Plethysmography. In: Aliverti A, Brusasco V, Macklem PT, Pedotti A (eds) Mechanics of breathing. Springer, Milano, pp 47–59. https://doi.org/10.1007/978-88-470-2916-3_5 | es_ES |
dc.description.references | Aliverti A, Dellaca R, Pelosi P, Chiumello D, Pedotti A, Gattinoni L (2000) Optoelectronic plethysmography in intensive care patients. Am J Respir Crit Care Med 161:1546–1552. https://doi.org/10.1164/ajrccm.161.5.9903024 | es_ES |
dc.description.references | Aliverti A, Dellacà R, Pelosi P, Chiumello D, Gattinoni L, Pedotti A (2001) Compartmental analysis of breathing in the supine and prone positions by optoelectronic plethysmography. Ann Biomed Eng 29:60–70. https://doi.org/10.1114/1.1332084 | es_ES |
dc.description.references | Aliverti A, Stevenson N, Dellaca R, Mauro AL, Pedotti A, Calverley P (2004) Regional chest wall volumes during exercise in chronic obstructive pulmonary disease. Thorax 59:210–216. https://doi.org/10.1136/thorax.2003.011494 | es_ES |
dc.description.references | Aliverti A, Uva B, Laviola M, Bovio D, Mauro AL, Tarperi C, Colombo E, Loomas B, Pedotti A, Similowski T (2010) Concomitant ventilatory and circulatory functions of the diaphragm and abdominal muscles. J Appl Physiol 109:1432–1440. https://doi.org/10.1152/japplphysiol.00576.2010 | es_ES |
dc.description.references | Altman DG, Bland JM (1983) Measurement in medicine: the analysis of method comparison studies. Statistician:307–317 | es_ES |
dc.description.references | Bates A, Ling MJ, Mann J, DK Arvind 2010 Respiratory rate and flow waveform estimation from tri-axial accelerometer data. 2010 International Conference on Body Sensor Networks. IEEE:144–150. DOI: https://doi.org/10.1109/BSN.2010.50 | es_ES |
dc.description.references | Bergese SD, Mestek ML, Kelley SD, McIntyre R Jr, Uribe AA, Sethi R, Watson JN, Addison PS (2017) Multicenter study validating accuracy of a continuous respiratory rate measurement derived from pulse oximetry: a comparison with capnography. Anesth Analg 124:1153–1159. https://doi.org/10.1213/ANE.0000000000001852 | es_ES |
dc.description.references | Bland JM, Altman DG (1986) Statistical methods for assessing agreement between two methods of clinical measurement. Lancet 327:307–310 | es_ES |
dc.description.references | Bland JM, Altman DG (1999) Measuring agreement in method comparison studies. Stat Methods Med Res 8:135–160. https://doi.org/10.1177/096228029900800204 | es_ES |
dc.description.references | Breteler MJ, Huizinga E, van Loon K, Leenen LP, Dohmen DA, Kalkman CJ, Blokhuis TJ (2018) Reliability of wireless monitoring using a wearable patch sensor in high-risk surgical patients at a step-down unit in the Netherlands: a clinical validation study. BMJ Open 8:e020162. https://doi.org/10.1136/bmjopen-2017-020162 | es_ES |
dc.description.references | Buch P, Friberg J, Scharling H, Lange P, Prescott E (2003) Reduced lung function and risk of atrial fibrillation in the Copenhagen City Heart Study. Eur Respir J 21:1012–1016. https://doi.org/10.1183/09031936.03.00051502 | es_ES |
dc.description.references | Castagna J, Weil MH, Shubin H (1974) Factors determining survival in patients with cardiac arrest. Chest 65:527–529. https://doi.org/10.1378/chest.65.5.527 | es_ES |
dc.description.references | Cesareo A, Previtali Y, Biffi E, Aliverti A (2019) Assessment of breathing parameters using an inertial measurement unit (IMU)-based system. Sensors 19:88. https://doi.org/10.3390/s19010088 | es_ES |
dc.description.references | Charlton PH, Bonnici T, Tarassenko L, Clifton DA, Beale R, Watkinson PJ (2016) An assessment of algorithms to estimate respiratory rate from the electrocardiogram and photoplethysmogram. Physiol Meas 37:610–626. https://doi.org/10.1088/0967-3334/37/4/610 | es_ES |
dc.description.references | Craig JJ (2009) Introduction to robotics: mechanics and control, 3/E. Pearson education international, 2005 | es_ES |
dc.description.references | Cretikos MA, Bellomo R, Hillman K, Chen J, Finfer S, Flabouris A (2008) Respiratory rate: the neglected vital sign. Med J Aust 188:657. https://doi.org/10.5694/j.1326-5377.2008.tb01825.x | es_ES |
dc.description.references | Dingli K, Coleman EL, Vennelle M, Finch SP, Wraith PK, Mackay TW, Douglas NJ (2003) Evaluation of a portable device for diagnosing the sleep apnoea/hypopnoea syndrome. Eur Respir J 21:253–259. https://doi.org/10.1183/09031936.03.00298103 | es_ES |
dc.description.references | Fekr AR, Janidarmian M, Radecka K, Zilic Z (2014) A medical cloud-based platform for respiration rate measurement and hierarchical classification of breath disorders. Sensors 14:11204–11224. https://doi.org/10.3390/s140611204 | es_ES |
dc.description.references | Fekr AR, Radecka K, Zilic Z (2014) Design of an E-health respiration and body posture monitoring system and its application for rib cage and abdomen synchrony analysis. IEEE Int Conf Bioinforma Bioeng:141–148. https://doi.org/10.1109/BIBE.2014.67 | es_ES |
dc.description.references | Fieselmann JF, Hendryx MS, Helms CM, Wakefield DS (1993) Respiratory rate predicts cardiopulmonary arrest for internal medicine inpatients. J Gen Intern Med 8:354–360. https://doi.org/10.1007/bf02600071 | es_ES |
dc.description.references | Gaidhani A, Moon KS, Ozturk Y, Lee SQ, Youm W (2017) Extraction and analysis of respiratory motion using wearable inertial sensor system during trunk motion. Sensors 17:2932. https://doi.org/10.3390/s17122932 | es_ES |
dc.description.references | Gollee H, Chen W (2007) Real-time detection of respiratory activity using an inertial measurement unit. Conf Proc IEEE Eng Med Biol Soc 2007:2230–2233. https://doi.org/10.1109/IEMBS.2007.4352768 | es_ES |
dc.description.references | Hung DP, Bonnet S, Guillemaud R, Castelli E, Pham Thi NY (2008, 2008) Estimation of respiratory waveform using an accelerometer. Conf Proc IEEE Eng Med Biol Soc:1493–1496. https://doi.org/10.1109/IEMBS.2008.4650316 | es_ES |
dc.description.references | Iandelli I, Aliverti A, Kayser B, Dellacà R, Cala SJ, Duranti R, Kelly S, Scano G, Sliwinski P, Yan S (2002) Determinants of exercise performance in normal men with externally imposed expiratory flow limitation. J Appl Physiol 92:1943–1952. https://doi.org/10.1152/japplphysiol.00393.2000 | es_ES |
dc.description.references | Jin A, Yin B, Morren G, Duric H, Aarts RM (2009) Performance evaluation of a tri-axial accelerometry-based respiration monitoring for ambient assisted living. Conf Proc IEEE Eng Med Biol Soc 2009:5677–5680. https://doi.org/10.1109/IEMBS.2009.5333116 | es_ES |
dc.description.references | Kenyon C, Cala S, Yan S, Aliverti A, Scano G, Duranti R, Pedotti A, Macklem PT (1997) Rib cage mechanics during quiet breathing and exercise in humans. J Appl Physiol 83:1242–1255. https://doi.org/10.1152/jappl.1997.83.4.1242 | es_ES |
dc.description.references | Konno K, Mead J (1967) Measurement of the separate volume changes of rib cage and abdomen during breathing. J Appl Physiol 22:407–422. https://doi.org/10.1152/jappl.1967.22.3.407 | es_ES |
dc.description.references | Kontaxis S, Lazaro J, Corino VD, Sandberg F, Bailón R, Laguna P, Sörnmo L (2019, 2019) ECG-derived respiratory rate in atrial fibrillation. IEEE Trans Biomed Eng. https://doi.org/10.1109/TBME.2019.2923587 | es_ES |
dc.description.references | Kuipers JB (1999) Quaternions and rotation sequences. Princeton university press Princeton | es_ES |
dc.description.references | Lapi S, Lavorini F, Borgioli G, Calzolai M, Masotti L, Pistolesi M, Fontana GA (2014) Respiratory rate assessment using a dual-accelerometer device. Respir Physiol Neurobiol 191:60–66. https://doi.org/10.1016/j.resp.2013.11.003 | es_ES |
dc.description.references | Layton AM, Moran SL, Garber CE, Armstrong HF, Basner RC, Thomashow BM, Bartels MN (2013) Optoelectronic plethysmography compared to spirometry during maximal exercise. Respir Physiol Neurobiol 185:362–368. https://doi.org/10.1016/j.resp.2012.09.004 | es_ES |
dc.description.references | Liu G, Guo Y, Zhu Q, Huang B, Wang L (2011) Estimation of respiration rate from three-dimensional acceleration data based on body sensor network. Telemed J E Health 17:705–711. https://doi.org/10.1089/tmj.2011.0022 | es_ES |
dc.description.references | Madgwick SO, Harrison AJ, Vaidyanathan A (2011) Estimation of IMU and MARG orientation using a gradient descent algorithm. IEEE Int Conf Rehabil Robot 2011:1–7. https://doi.org/10.1109/ICORR.2011.5975346 | es_ES |
dc.description.references | Mann J, Rabinovich R, Bates A, Giavedoni S, MacNee W, Arvind DK (2011) Simultaneous activity and respiratory monitoring using an accelerometer. Int Conf Body Sens Netw 2011:139–143. https://doi.org/10.1109/BSN.2011.26 | es_ES |
dc.description.references | Marins JL, Yun X, Bachmann ER,. McGhee RB, Zyda MJ (2001) An extended Kalman filter for quaternion-based orientation estimation using MARG sensors. Proceedings 2001 IEEE/RSJ International Conference on Intelligent Robots and Systems. Expanding the Societal Role of Robotics in the the Next Millennium. 2001: 2003-2011. DOI: https://doi.org/10.1109/IROS.2001.976367 | es_ES |
dc.description.references | McCaughey E, McLachlan A, Gollee H (2014) Non-intrusive real-time breathing pattern detection and classification for automatic abdominal functional electrical stimulation. Med Eng Phys 36:1057–1061. https://doi.org/10.1016/j.medengphy.2014.04.005 | es_ES |
dc.description.references | Moody GB, Mark RG, Bump MA, Weinstein JS, Berman AD, Mietus JE, Goldberger AL (1986) Clinical validation of the ECG-derived respiration (EDR) technique. Comput Cardiol 13:507–510 | es_ES |
dc.description.references | Kundan Nepal, Eric Biegeleisen and Ning T 2002 Apnea detection and respiration rate estimation through parametric modelling. Proceedings of the IEEE 28th Annual Northeast Bioengineering Conference (IEEE Cat. No.02CH37342), 2002: 277-278.DOI: https://doi.org/10.1109/NEBC.2002.999573 | es_ES |
dc.description.references | Priori R, Aliverti A, Albuquerque AL, Quaranta M, Albert P, Calverley PM (2013) The effect of posture on asynchronous chest wall movement in COPD. J Appl Physiol 114:1066–1075. https://doi.org/10.1152/japplphysiol.00414.2012 | es_ES |
dc.description.references | Reinvuo T, Hannula M, Sorvoja H, Alasaarela E, Myllyla R (2006) Measurement of respiratory rate with high-resolution accelerometer and EMFit pressure sensor proceedings of the 2006 IEEE Sensors Applications Symposium, 2006: 192–195. DOI: https://doi.org/10.1109/SAS.2006.1634270 | es_ES |
dc.description.references | Selvaraj N (2014) Long-term remote monitoring of vital signs using a wireless patch sensor. IEEE Healthc Innov Conf (HIC) 2014:83–86. https://doi.org/10.1109/HIC.2014.7038880 | es_ES |
dc.description.references | Staats BA, Bonekat HW, Harris CD, Offord KP (1984) Chest wall motion in sleep apnea. Am Rev Respir Dis 130:59–63. https://doi.org/10.1164/arrd.1984.130.1.59 | es_ES |
dc.description.references | Stevenson IH, Teichtahl H, Cunnington D, Ciavarella S, Gordon I, Kalman JM (2008) Prevalence of sleep disordered breathing in paroxysmal and persistent atrial fibrillation patients with normal left ventricular function. Eur Heart J 29:1662–1669. https://doi.org/10.1093/eurheartj/ehn214 | es_ES |
dc.description.references | Storck K, Karlsson M, Ask P, Loyd D (1996) Heat transfer evaluation of the nasal thermistor technique. IEEE Trans Biomed Eng 43:1187–1191. https://doi.org/10.1109/10.544342 | es_ES |
dc.description.references | Subbe C, Davies R, Williams E, Rutherford P, Gemmell L (2003) Effect of introducing the modified early warning score on clinical outcomes, cardio-pulmonary arrests and intensive care utilisation in acute medical admissions. Anaesthesia 58:797–802. https://doi.org/10.1046/j.1365-2044.2003.03258.x | es_ES |
dc.description.references | Terzano C, Romani S, Conti V, Paone G, Oriolo F, Vitarelli A (2014) Atrial fibrillation in the acute, hypercapnic exacerbations of COPD. Eur Rev Med Pharmacol Sci 18:2908–2917 | es_ES |
dc.description.references | Tobin MJ, Yang K (1990) Weaning from mechanical ventilation. Crit Care Clin 6:725–747 | es_ES |
dc.description.references | Torres A, Fiz JA, Galdiz B, Gea J, Morera J, Jané R (2004) Assessment of respiratory muscle effort studying diaphragm movement registered with surface sensors. Animal model (dogs). Conf Proc IEEE Eng Med Biol Soc 2004:3917–3920. https://doi.org/10.1109/IEMBS.2004.1404095 | es_ES |
dc.description.references | van Loon K, Peelen LM, van de Vlasakker EC, Kalkman CJ, van Wolfswinkel L, van Zaane B (2018) Accuracy of remote continuous respiratory rate monitoring technologies intended for low care clinical settings: a prospective observational study. Can J Anaesth 65:1324–1332. https://doi.org/10.1007/s12630-018-1214-z | es_ES |
dc.description.references | Vieira DS, Hoffman M, Pereira DA, Britto RR, Parreira VF (2013) Optoelectronic plethysmography: intra-rater and inter-rater reliability in healthy subjects. Respir Physiol Neurobiol 189:473–476. https://doi.org/10.1016/j.resp.2013.08.023 | es_ES |
dc.description.references | Werthammer J, Krasner J, DiBenedetto J, Stark AR (1983) Apnea monitoring by acoustic detection of airflow. Pediatrics 71:53–55 | es_ES |
dc.description.references | Yadollahi A, Moussavi ZM (2006) A robust method for estimating respiratory flow using tracheal sounds entropy. IEEE Trans Biomed Eng 53:662–668. https://doi.org/10.1109/TBME.2006.870231 | es_ES |
dc.description.references | Yoon J, Noh Y, Kwon Y, Kim W, Yoon H (2014) Improvement of dynamic respiration monitoring through sensor fusion of accelerometer and gyro-sensor. J Electr Eng Technol 9:334–343. https://doi.org/10.5370/JEET.2014.9.1.334 | es_ES |