- -

A novel acquisition platform for long-term breathing frequency monitoring based on inertial measurement units

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

A novel acquisition platform for long-term breathing frequency monitoring based on inertial measurement units

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Cesareo, Ambra es_ES
dc.contributor.author Biffi, Emilia es_ES
dc.contributor.author Cuesta Frau, David es_ES
dc.contributor.author D'Angelo, Maria G. es_ES
dc.contributor.author Aliverti, Andrea es_ES
dc.date.accessioned 2021-11-05T10:17:43Z
dc.date.available 2021-11-05T10:17:43Z
dc.date.issued 2020-04 es_ES
dc.identifier.issn 0140-0118 es_ES
dc.identifier.uri http://hdl.handle.net/10251/176071
dc.description.abstract [EN] Continuous monitoring of breathing frequency (f(B)) could foster early prediction of adverse clinical effects and exacerbation of medical conditions. Current solutions are invasive or obtrusive and thus not suitable for prolonged monitoring outside the clinical setting. Previous studies demonstrated the feasibility of deriving f(B) by measuring inclination changes due to breathing using accelerometers or inertial measurement units (IMU). Nevertheless, few studies faced the problem of motion artifacts that limit the use of IMU-based systems for continuous monitoring. Moreover, few attempts have been made to move towards real portability and wearability of such devices. This paper proposes a wearable IMU-based device that communicates via Bluetooth with a smartphone, uploading data on a web server to allow remote monitoring. Two IMU units are placed on thorax and abdomen to record breathing-related movements, while a third IMU unit records body/trunk motion and is used as reference. The performance of the proposed system was evaluated in terms of long-acquisition-platform reliability showing good performances in terms of duration and data loss amount. The device was preliminarily tested in terms of accuracy in breathing temporal parameter measurement, in static condition, during postural changes, and during slight indoor activities showing favorable comparison against the reference methods (mean error breathing frequency < 5%). Graphical abstract Proof of concept of a wearable, wireless, modular respiratory Holter based on inertial measurement units (IMUS) for the continuous breathing pattern monitoring through the detection of chest wall breathing-related movements. es_ES
dc.description.sponsorship The authors thank "Fondazione per la Ricerca Scientifica Termale grants" for the financial support and all the participants. A special thanks to Davide Redaelli for the support in the realization of the housing boxes, from CAD modeling to 3D printing. We also want to thank Prof.ssa Galli and Dr. Nicola Cau, of the "Posture and Movement Analysis Laboratory "Luigi Divieti" of the Department of Bioengineering of the Politecnico di Milano, for their willingness and kindness to lend us the K5 Cosmed system and assist us during the acquisitions es_ES
dc.language Inglés es_ES
dc.publisher Springer-Verlag es_ES
dc.relation.ispartof Medical & Biological Engineering & Computing es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Monitoring es_ES
dc.subject Physiologic es_ES
dc.subject Respiration es_ES
dc.subject Wearable electronic devices es_ES
dc.subject Mobile health units es_ES
dc.subject Optoelectronic plethysmography es_ES
dc.subject.classification ARQUITECTURA Y TECNOLOGIA DE COMPUTADORES es_ES
dc.title A novel acquisition platform for long-term breathing frequency monitoring based on inertial measurement units es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1007/s11517-020-02125-9 es_ES
dc.rights.accessRights Cerrado es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Informática de Sistemas y Computadores - Departament d'Informàtica de Sistemes i Computadors es_ES
dc.description.bibliographicCitation Cesareo, A.; Biffi, E.; Cuesta Frau, D.; D'angelo, MG.; Aliverti, A. (2020). A novel acquisition platform for long-term breathing frequency monitoring based on inertial measurement units. Medical & Biological Engineering & Computing. 58:785-804. https://doi.org/10.1007/s11517-020-02125-9 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1007/s11517-020-02125-9 es_ES
dc.description.upvformatpinicio 785 es_ES
dc.description.upvformatpfin 804 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 58 es_ES
dc.identifier.pmid 32002753 es_ES
dc.relation.pasarela S\401357 es_ES
dc.contributor.funder Fondazione per la Ricerca Scientifica Termale es_ES
dc.description.references Aliverti A, Pedotti A (2002) Opto-electronic Plethysmography. In: Aliverti A, Brusasco V, Macklem PT, Pedotti A (eds) Mechanics of breathing. Springer, Milano, pp 47–59. https://doi.org/10.1007/978-88-470-2916-3_5 es_ES
dc.description.references Aliverti A, Dellaca R, Pelosi P, Chiumello D, Pedotti A, Gattinoni L (2000) Optoelectronic plethysmography in intensive care patients. Am J Respir Crit Care Med 161:1546–1552. https://doi.org/10.1164/ajrccm.161.5.9903024 es_ES
dc.description.references Aliverti A, Dellacà R, Pelosi P, Chiumello D, Gattinoni L, Pedotti A (2001) Compartmental analysis of breathing in the supine and prone positions by optoelectronic plethysmography. Ann Biomed Eng 29:60–70. https://doi.org/10.1114/1.1332084 es_ES
dc.description.references Aliverti A, Stevenson N, Dellaca R, Mauro AL, Pedotti A, Calverley P (2004) Regional chest wall volumes during exercise in chronic obstructive pulmonary disease. Thorax 59:210–216. https://doi.org/10.1136/thorax.2003.011494 es_ES
dc.description.references Aliverti A, Uva B, Laviola M, Bovio D, Mauro AL, Tarperi C, Colombo E, Loomas B, Pedotti A, Similowski T (2010) Concomitant ventilatory and circulatory functions of the diaphragm and abdominal muscles. J Appl Physiol 109:1432–1440. https://doi.org/10.1152/japplphysiol.00576.2010 es_ES
dc.description.references Altman DG, Bland JM (1983) Measurement in medicine: the analysis of method comparison studies. Statistician:307–317 es_ES
dc.description.references Bates A, Ling MJ, Mann J, DK Arvind 2010 Respiratory rate and flow waveform estimation from tri-axial accelerometer data. 2010 International Conference on Body Sensor Networks. IEEE:144–150. DOI: https://doi.org/10.1109/BSN.2010.50 es_ES
dc.description.references Bergese SD, Mestek ML, Kelley SD, McIntyre R Jr, Uribe AA, Sethi R, Watson JN, Addison PS (2017) Multicenter study validating accuracy of a continuous respiratory rate measurement derived from pulse oximetry: a comparison with capnography. Anesth Analg 124:1153–1159. https://doi.org/10.1213/ANE.0000000000001852 es_ES
dc.description.references Bland JM, Altman DG (1986) Statistical methods for assessing agreement between two methods of clinical measurement. Lancet 327:307–310 es_ES
dc.description.references Bland JM, Altman DG (1999) Measuring agreement in method comparison studies. Stat Methods Med Res 8:135–160. https://doi.org/10.1177/096228029900800204 es_ES
dc.description.references Breteler MJ, Huizinga E, van Loon K, Leenen LP, Dohmen DA, Kalkman CJ, Blokhuis TJ (2018) Reliability of wireless monitoring using a wearable patch sensor in high-risk surgical patients at a step-down unit in the Netherlands: a clinical validation study. BMJ Open 8:e020162. https://doi.org/10.1136/bmjopen-2017-020162 es_ES
dc.description.references Buch P, Friberg J, Scharling H, Lange P, Prescott E (2003) Reduced lung function and risk of atrial fibrillation in the Copenhagen City Heart Study. Eur Respir J 21:1012–1016. https://doi.org/10.1183/09031936.03.00051502 es_ES
dc.description.references Castagna J, Weil MH, Shubin H (1974) Factors determining survival in patients with cardiac arrest. Chest 65:527–529. https://doi.org/10.1378/chest.65.5.527 es_ES
dc.description.references Cesareo A, Previtali Y, Biffi E, Aliverti A (2019) Assessment of breathing parameters using an inertial measurement unit (IMU)-based system. Sensors 19:88. https://doi.org/10.3390/s19010088 es_ES
dc.description.references Charlton PH, Bonnici T, Tarassenko L, Clifton DA, Beale R, Watkinson PJ (2016) An assessment of algorithms to estimate respiratory rate from the electrocardiogram and photoplethysmogram. Physiol Meas 37:610–626. https://doi.org/10.1088/0967-3334/37/4/610 es_ES
dc.description.references Craig JJ (2009) Introduction to robotics: mechanics and control, 3/E. Pearson education international, 2005 es_ES
dc.description.references Cretikos MA, Bellomo R, Hillman K, Chen J, Finfer S, Flabouris A (2008) Respiratory rate: the neglected vital sign. Med J Aust 188:657. https://doi.org/10.5694/j.1326-5377.2008.tb01825.x es_ES
dc.description.references Dingli K, Coleman EL, Vennelle M, Finch SP, Wraith PK, Mackay TW, Douglas NJ (2003) Evaluation of a portable device for diagnosing the sleep apnoea/hypopnoea syndrome. Eur Respir J 21:253–259. https://doi.org/10.1183/09031936.03.00298103 es_ES
dc.description.references Fekr AR, Janidarmian M, Radecka K, Zilic Z (2014) A medical cloud-based platform for respiration rate measurement and hierarchical classification of breath disorders. Sensors 14:11204–11224. https://doi.org/10.3390/s140611204 es_ES
dc.description.references Fekr AR, Radecka K, Zilic Z (2014) Design of an E-health respiration and body posture monitoring system and its application for rib cage and abdomen synchrony analysis. IEEE Int Conf Bioinforma Bioeng:141–148. https://doi.org/10.1109/BIBE.2014.67 es_ES
dc.description.references Fieselmann JF, Hendryx MS, Helms CM, Wakefield DS (1993) Respiratory rate predicts cardiopulmonary arrest for internal medicine inpatients. J Gen Intern Med 8:354–360. https://doi.org/10.1007/bf02600071 es_ES
dc.description.references Gaidhani A, Moon KS, Ozturk Y, Lee SQ, Youm W (2017) Extraction and analysis of respiratory motion using wearable inertial sensor system during trunk motion. Sensors 17:2932. https://doi.org/10.3390/s17122932 es_ES
dc.description.references Gollee H, Chen W (2007) Real-time detection of respiratory activity using an inertial measurement unit. Conf Proc IEEE Eng Med Biol Soc 2007:2230–2233. https://doi.org/10.1109/IEMBS.2007.4352768 es_ES
dc.description.references Hung DP, Bonnet S, Guillemaud R, Castelli E, Pham Thi NY (2008, 2008) Estimation of respiratory waveform using an accelerometer. Conf Proc IEEE Eng Med Biol Soc:1493–1496. https://doi.org/10.1109/IEMBS.2008.4650316 es_ES
dc.description.references Iandelli I, Aliverti A, Kayser B, Dellacà R, Cala SJ, Duranti R, Kelly S, Scano G, Sliwinski P, Yan S (2002) Determinants of exercise performance in normal men with externally imposed expiratory flow limitation. J Appl Physiol 92:1943–1952. https://doi.org/10.1152/japplphysiol.00393.2000 es_ES
dc.description.references Jin A, Yin B, Morren G, Duric H, Aarts RM (2009) Performance evaluation of a tri-axial accelerometry-based respiration monitoring for ambient assisted living. Conf Proc IEEE Eng Med Biol Soc 2009:5677–5680. https://doi.org/10.1109/IEMBS.2009.5333116 es_ES
dc.description.references Kenyon C, Cala S, Yan S, Aliverti A, Scano G, Duranti R, Pedotti A, Macklem PT (1997) Rib cage mechanics during quiet breathing and exercise in humans. J Appl Physiol 83:1242–1255. https://doi.org/10.1152/jappl.1997.83.4.1242 es_ES
dc.description.references Konno K, Mead J (1967) Measurement of the separate volume changes of rib cage and abdomen during breathing. J Appl Physiol 22:407–422. https://doi.org/10.1152/jappl.1967.22.3.407 es_ES
dc.description.references Kontaxis S, Lazaro J, Corino VD, Sandberg F, Bailón R, Laguna P, Sörnmo L (2019, 2019) ECG-derived respiratory rate in atrial fibrillation. IEEE Trans Biomed Eng. https://doi.org/10.1109/TBME.2019.2923587 es_ES
dc.description.references Kuipers JB (1999) Quaternions and rotation sequences. Princeton university press Princeton es_ES
dc.description.references Lapi S, Lavorini F, Borgioli G, Calzolai M, Masotti L, Pistolesi M, Fontana GA (2014) Respiratory rate assessment using a dual-accelerometer device. Respir Physiol Neurobiol 191:60–66. https://doi.org/10.1016/j.resp.2013.11.003 es_ES
dc.description.references Layton AM, Moran SL, Garber CE, Armstrong HF, Basner RC, Thomashow BM, Bartels MN (2013) Optoelectronic plethysmography compared to spirometry during maximal exercise. Respir Physiol Neurobiol 185:362–368. https://doi.org/10.1016/j.resp.2012.09.004 es_ES
dc.description.references Liu G, Guo Y, Zhu Q, Huang B, Wang L (2011) Estimation of respiration rate from three-dimensional acceleration data based on body sensor network. Telemed J E Health 17:705–711. https://doi.org/10.1089/tmj.2011.0022 es_ES
dc.description.references Madgwick SO, Harrison AJ, Vaidyanathan A (2011) Estimation of IMU and MARG orientation using a gradient descent algorithm. IEEE Int Conf Rehabil Robot 2011:1–7. https://doi.org/10.1109/ICORR.2011.5975346 es_ES
dc.description.references Mann J, Rabinovich R, Bates A, Giavedoni S, MacNee W, Arvind DK (2011) Simultaneous activity and respiratory monitoring using an accelerometer. Int Conf Body Sens Netw 2011:139–143. https://doi.org/10.1109/BSN.2011.26 es_ES
dc.description.references Marins JL, Yun X, Bachmann ER,. McGhee RB, Zyda MJ (2001) An extended Kalman filter for quaternion-based orientation estimation using MARG sensors. Proceedings 2001 IEEE/RSJ International Conference on Intelligent Robots and Systems. Expanding the Societal Role of Robotics in the the Next Millennium. 2001: 2003-2011. DOI: https://doi.org/10.1109/IROS.2001.976367 es_ES
dc.description.references McCaughey E, McLachlan A, Gollee H (2014) Non-intrusive real-time breathing pattern detection and classification for automatic abdominal functional electrical stimulation. Med Eng Phys 36:1057–1061. https://doi.org/10.1016/j.medengphy.2014.04.005 es_ES
dc.description.references Moody GB, Mark RG, Bump MA, Weinstein JS, Berman AD, Mietus JE, Goldberger AL (1986) Clinical validation of the ECG-derived respiration (EDR) technique. Comput Cardiol 13:507–510 es_ES
dc.description.references Kundan Nepal, Eric Biegeleisen and Ning T 2002 Apnea detection and respiration rate estimation through parametric modelling. Proceedings of the IEEE 28th Annual Northeast Bioengineering Conference (IEEE Cat. No.02CH37342), 2002: 277-278.DOI: https://doi.org/10.1109/NEBC.2002.999573 es_ES
dc.description.references Priori R, Aliverti A, Albuquerque AL, Quaranta M, Albert P, Calverley PM (2013) The effect of posture on asynchronous chest wall movement in COPD. J Appl Physiol 114:1066–1075. https://doi.org/10.1152/japplphysiol.00414.2012 es_ES
dc.description.references Reinvuo T, Hannula M, Sorvoja H, Alasaarela E, Myllyla R (2006) Measurement of respiratory rate with high-resolution accelerometer and EMFit pressure sensor proceedings of the 2006 IEEE Sensors Applications Symposium, 2006: 192–195. DOI: https://doi.org/10.1109/SAS.2006.1634270 es_ES
dc.description.references Selvaraj N (2014) Long-term remote monitoring of vital signs using a wireless patch sensor. IEEE Healthc Innov Conf (HIC) 2014:83–86. https://doi.org/10.1109/HIC.2014.7038880 es_ES
dc.description.references Staats BA, Bonekat HW, Harris CD, Offord KP (1984) Chest wall motion in sleep apnea. Am Rev Respir Dis 130:59–63. https://doi.org/10.1164/arrd.1984.130.1.59 es_ES
dc.description.references Stevenson IH, Teichtahl H, Cunnington D, Ciavarella S, Gordon I, Kalman JM (2008) Prevalence of sleep disordered breathing in paroxysmal and persistent atrial fibrillation patients with normal left ventricular function. Eur Heart J 29:1662–1669. https://doi.org/10.1093/eurheartj/ehn214 es_ES
dc.description.references Storck K, Karlsson M, Ask P, Loyd D (1996) Heat transfer evaluation of the nasal thermistor technique. IEEE Trans Biomed Eng 43:1187–1191. https://doi.org/10.1109/10.544342 es_ES
dc.description.references Subbe C, Davies R, Williams E, Rutherford P, Gemmell L (2003) Effect of introducing the modified early warning score on clinical outcomes, cardio-pulmonary arrests and intensive care utilisation in acute medical admissions. Anaesthesia 58:797–802. https://doi.org/10.1046/j.1365-2044.2003.03258.x es_ES
dc.description.references Terzano C, Romani S, Conti V, Paone G, Oriolo F, Vitarelli A (2014) Atrial fibrillation in the acute, hypercapnic exacerbations of COPD. Eur Rev Med Pharmacol Sci 18:2908–2917 es_ES
dc.description.references Tobin MJ, Yang K (1990) Weaning from mechanical ventilation. Crit Care Clin 6:725–747 es_ES
dc.description.references Torres A, Fiz JA, Galdiz B, Gea J, Morera J, Jané R (2004) Assessment of respiratory muscle effort studying diaphragm movement registered with surface sensors. Animal model (dogs). Conf Proc IEEE Eng Med Biol Soc 2004:3917–3920. https://doi.org/10.1109/IEMBS.2004.1404095 es_ES
dc.description.references van Loon K, Peelen LM, van de Vlasakker EC, Kalkman CJ, van Wolfswinkel L, van Zaane B (2018) Accuracy of remote continuous respiratory rate monitoring technologies intended for low care clinical settings: a prospective observational study. Can J Anaesth 65:1324–1332. https://doi.org/10.1007/s12630-018-1214-z es_ES
dc.description.references Vieira DS, Hoffman M, Pereira DA, Britto RR, Parreira VF (2013) Optoelectronic plethysmography: intra-rater and inter-rater reliability in healthy subjects. Respir Physiol Neurobiol 189:473–476. https://doi.org/10.1016/j.resp.2013.08.023 es_ES
dc.description.references Werthammer J, Krasner J, DiBenedetto J, Stark AR (1983) Apnea monitoring by acoustic detection of airflow. Pediatrics 71:53–55 es_ES
dc.description.references Yadollahi A, Moussavi ZM (2006) A robust method for estimating respiratory flow using tracheal sounds entropy. IEEE Trans Biomed Eng 53:662–668. https://doi.org/10.1109/TBME.2006.870231 es_ES
dc.description.references Yoon J, Noh Y, Kwon Y, Kim W, Yoon H (2014) Improvement of dynamic respiration monitoring through sensor fusion of accelerometer and gyro-sensor. J Electr Eng Technol 9:334–343. https://doi.org/10.5370/JEET.2014.9.1.334 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem