- -

Efficient evaluation of a gene containment system for poplar through early flowering induction

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Efficient evaluation of a gene containment system for poplar through early flowering induction

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Briones, M. Valentina es_ES
dc.contributor.author Hoenicka, Hans es_ES
dc.contributor.author Cañas Clemente, Luís Antonio es_ES
dc.contributor.author BELTRAN PORTER, JOSE PIO es_ES
dc.contributor.author Hanelt, Dieter es_ES
dc.contributor.author Sharry, Sandra es_ES
dc.contributor.author Fladung, Matthias es_ES
dc.date.accessioned 2021-11-05T12:36:53Z
dc.date.available 2021-11-05T12:36:53Z
dc.date.issued 2020-05 es_ES
dc.identifier.issn 0721-7714 es_ES
dc.identifier.uri http://hdl.handle.net/10251/176109
dc.description.abstract [EN] Key message The early flowering system HSP::AtFT allowed a fast evaluation of a gene containment system based on the construct PsEND1::barnase-barstar for poplar. Transgenic lines showed disturbed pollen development and sterility. Vertical gene transfer through pollen flow from transgenic or non-native plant species into their crossable natural relatives is a major concern. Gene containment approaches have been proposed to reduce or even avoid gene flow among tree species. However, evaluation of genetic containment strategies for trees is very difficult due to the long-generation times. Early flowering induction would allow faster evaluation of genetic containment in this case. Although no reliable methods were available for the induction of fertile flowers in poplar, recently, a new early flowering approach was developed. In this study, early flowering poplar lines containing the gene construct PsEND1::barnase-barstar were obtained. The PsEND1 promoter was chosen due to its early expression pattern, its versality and efficiency for generation of male-sterile plants fused to the barnase gene. RT-PCRs confirmed barnase gene activity in flowers, and pollen development was disturbed, leading to sterile flowers. The system developed in this study represents a valuable tool for gene containment studies in forest tree species. es_ES
dc.description.sponsorship Open Access funding provided by Projekt DEAL. This work was funded with a scholarship by the Deutscher Akademischer Austauschdienst (DAAD). We thank S. Bein, D. Ebbinghaus, and A. Worm for helpful technical assistance in the laboratory, and the greenhouse staff (M. Hunger, G. Wiemann, R. Ebbinghaus, and M. Spauszus) for plant cultivation. es_ES
dc.language Inglés es_ES
dc.publisher Springer-Verlag es_ES
dc.relation.ispartof Plant Cell Reports es_ES
dc.rights Reconocimiento (by) es_ES
dc.subject Gene containment es_ES
dc.subject Early fowering es_ES
dc.subject Genetic transformation es_ES
dc.subject Populus es_ES
dc.subject PsEND1 es_ES
dc.subject Biosafety es_ES
dc.title Efficient evaluation of a gene containment system for poplar through early flowering induction es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1007/s00299-020-02515-1 es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto Universitario Mixto de Biología Molecular y Celular de Plantas - Institut Universitari Mixt de Biologia Molecular i Cel·lular de Plantes es_ES
dc.description.bibliographicCitation Briones, MV.; Hoenicka, H.; Cañas Clemente, LA.; Beltran Porter, JP.; Hanelt, D.; Sharry, S.; Fladung, M. (2020). Efficient evaluation of a gene containment system for poplar through early flowering induction. Plant Cell Reports. 39(5):577-587. https://doi.org/10.1007/s00299-020-02515-1 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1007/s00299-020-02515-1 es_ES
dc.description.upvformatpinicio 577 es_ES
dc.description.upvformatpfin 587 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 39 es_ES
dc.description.issue 5 es_ES
dc.identifier.pmid 32052127 es_ES
dc.identifier.pmcid PMC7165154 es_ES
dc.relation.pasarela S\433270 es_ES
dc.contributor.funder Projekt DEAL es_ES
dc.contributor.funder Deutscher Akademischer Austauschdienst es_ES
dc.description.references Al-Ahmad H (2018) Biotechnology for bioenergy dedicated trees: meeting future energy demands. Z Naturforsch 73:15–32. https://doi.org/10.1515/znc-2016-0185 es_ES
dc.description.references Beltrán JP, Roque E, Medina M, Madueño F, Gómez MD, Cañas LA (2007) Androesterilidad inducida mediante ingeniería genética. Fundamentos y aplicaciones biotecnológicas. An R Acad Nac Farm 73:1237–1264 es_ES
dc.description.references Böhlenius H, Huang T, Charbonnel-Campaa L, Brunner AM, Jansson S, Strauss SH, Nilsson O (2006) CO/FT regulatory module controls timing of flowering and seasonal growth cessation in trees. Science 312:1040–1043 es_ES
dc.description.references Brunner AM, Varkonyi-Gasic E, Jones RC (2017) Phase change and phenology in trees. In: Groover A, Cronk Q (eds) Comparative and evolutionary genomics of Angiosperm trees. Springer, Cham, pp 227–274. https://doi.org/10.1007/7397_2016_30 es_ES
dc.description.references Chang YY, Wang AY, Cronan JE (1993) Molecular cloning, DNA sequencing, and biochemical analyses of Escherichia coli glyoxylate carboligase. An enzyme of the acetohydroxy acid synthase-pyruvate oxidase family. J Biol Chem 268:3911–3919 es_ES
dc.description.references Dumolin S, Demesure B, Petit RJ (1995) Inheritance of chloroplast and mitochondrial genomes in pedunculate oak investigated with an efficient PCR method. Theor Appl Genet 91:1253–1256 es_ES
dc.description.references Elorriaga E, Meilan R, Ma C, Skinner JS, Etherington E, Brunner AM, Strauss SH (2014) A tapetal ablation transgene induces stable male sterility and slows field growth in Populus. Tree Gen Gen 10:1583–1593 es_ES
dc.description.references Elorriaga E, Klocko AL, Ma C, Strauss SH (2018) Variation in mutation spectra among CRISPR/Cas9 mutagenized poplars. Front Plant Sci 9:594. https://doi.org/10.3389/fpls.2018.00594 es_ES
dc.description.references Fladung M, Ahuja M (1995) Sandwich method for non-radioactive hybridisations. Biotechniques 18:800–802 es_ES
dc.description.references Fladung M, Muhs HJ, Ahuja MR (1996) Morphological changes observed in transgenic Populus carrying the rolC gene from Agrobacterium rhizogenes. Silv Genet 45:349–354 es_ES
dc.description.references Fladung M, Kumar S, Ahuja MR (1997) Genetic transformation of Populus genotypes with different chimaeric gene constructs: transformation efficiency and molecular analysis. Transgenic Res 6:111–121 es_ES
dc.description.references Fritsche S, Klocko AL, Boron A, Brunner AM, Thorlby G (2018) Strategies for engineering reproductive sterility in plantation forests. Front Plant Sci 9:1671. https://doi.org/10.3389/fpls.2018.01671 es_ES
dc.description.references García-Sogo B, Pineda B, Castelblanque L, Antón T, Medina M, Roque E, Torresi C, Beltrán JP, Moreno V, Cañas LA (2010) Efficient transformation of Kalanchoe blossfeldiana and production of male-sterile plants by engineered anther ablation. Plant Cell Rep 29:61–77 es_ES
dc.description.references García-Sogo B, Pineda B, Roque E, Atarés A, Antón T, Beltrán JP, Moreno V, Cañas LA (2012) Production of engineered long-life and male sterile Pelargonium plants. BMC Plant Biol 12:156–162 es_ES
dc.description.references Gardner N, Felsheim R, Smith AG (2009) Production of male- and female-sterile plants through reproductive tissue ablation. J Plant Physiol 166(8):871–881 es_ES
dc.description.references Gómez MD, Beltrán JP, Cañas LA (2004) The pea END1 promoter drives anther-specific gene expression in different plant species. Planta 219:967–981 es_ES
dc.description.references Hartley RW (1988) Barnase and barstar expression of its cloned inhibitor permits expression of a cloned ribonuclease. J Mol Biol 202:913–915 es_ES
dc.description.references Hoenicka H, Fladung M (2006) Biosafety in Populus spp. and other forest trees: from non-native species to taxa derived from traditional breeding and genetic engineering. Trees 20:131–144 es_ES
dc.description.references Hoenicka H, Nowitzki O, Debener T, Fladung M (2006) Faster evaluation of sterility strategies in transgenic trees. Silv Genet 55:285–291 es_ES
dc.description.references Hoenicka H, Lehnhardt D, Polak O, Fladung M (2012) Early flowering and genetic containment studies in transgenic poplar. iForest 5:138–146 es_ES
dc.description.references Hoenicka H, Lehnhardt D, Nilsson O, Hanelt D, Fladung M (2014) Successful crossings with early flowering transgenic poplar: interspecific crossings, but not transgenesis, promoted aberrant phenotypes in offspring. Plant Biotechnol J 12:1066–1074 es_ES
dc.description.references Hoenicka H, Lehnhardt D, Briones V, Nilsson O, Fladung M (2016) Low temperatures are required to induce the development of fertile flowers in transgenic male and female early flowering poplar (Populus tremula L.). Tree Physiol 36:667–677. https://doi.org/10.1093/treephys/tpw015 es_ES
dc.description.references Hsu CY, Liu YX, Luthe DS, Yuceer C (2006) Poplar FT2 shortens the juvenile phase and promotes seasonal flowering. Plant Cell 18:1846–1861 es_ES
dc.description.references Klocko AL, Brunner AM, Huang J, Meilan R, Lu H, Strauss SH (2016) Containment of transgenic trees by suppression of LEAFY. Nat Biotechnol 34:918–922. https://doi.org/10.1038/nbt.3636 es_ES
dc.description.references Klocko AL, Lu H, Magnuson A, Brunner AM, Ma C, Strauss SH (2018) Phenotypic expression and stability in a large-scale field study of genetically engineered poplars containing sexual containment transgenes. Front Bioeng Biotechnol 6:100. https://doi.org/10.3389/fbioe.2018.00100 es_ES
dc.description.references Lännenpää M, Hassinen M, Ranki A, Hölttä-Vuori M, Lemmetyinen J, Keinonen K, Sopanen T (2005) Prevention of flower development in birch and other plants using a BpFULL1:BARNASE construct. Plant Cell Rep 24(2):69–78 es_ES
dc.description.references Lloyd G, McCown B (1980) Commercially-feasible micropropagation of mountain laurel, Kalmia latifolia, by use of shoot-tip culture. Comb Proc Int Plant Prop Soc 30:421–427 es_ES
dc.description.references Lu S, Yi S, Zhang J, Liu L, Bao M, Liu G (2019) Isolation and functional characterization of the promoter of SEPALLATA3 gene in London plane and its application in genetic engineering of sterility. Plant Cell Tiss Org Cult 136:109–121 es_ES
dc.description.references Mariani C, Gossele V, De Beuckeleer M, De Block M, Goldberg RB, De Greef W, Leemans J (1992) A chimaeric ribonuclease inhibitor gene restores fertility to male sterile plants. Nature 357:384–387 es_ES
dc.description.references Medina M, Roque E, Pineda B, Cañas LA, Rodríguez-Concepción M, Beltrán JP, Gómez-Mena C (2013) Early anther ablation triggers parthenocarpic fruit development in tomato plants. Plant Biotechnol J 11:770–779 es_ES
dc.description.references Meilan R, Brunner A, Skinner J, Strauss SH (2001) Modification of flowering in transgenic trees. In: Komamine A, Morohoshi N (eds) Molecular breeding of woody plants. Elsevier Science BV, Amsterdam, pp 247–256 es_ES
dc.description.references Paddon CJ, Hartley RW (1986) Cloning, sequencing and transcription of an inactivated copy of Bacillus amyloliquefaciens extracellular ribonuclease (barnase). Gene 40(2–3):231–239. https://doi.org/10.1016/0378-1119(85)90045-9 es_ES
dc.description.references Parmentier-Line CM, Coleman GD (2016) Constitutive expression of the poplar FD-like basic leucine zipper transcription factor alters growth and bud development. Plant Biotechnol J 14:260–270 es_ES
dc.description.references Pistón F, García C, de la Viña G, Beltrán JP, Cañas LA, Barro F (2008) The pea PsEND1 promoter drives the expression of GUS in transgenic wheat at the binucleate microspores stage and during pollen tube development. Mol Breed 21:401–405 es_ES
dc.description.references Rojas-Gracia P, Roque E, Medina M, Rochina M, Hamza R, Angarita-Díaz P, Moremo V, Pérez-Martín F, Lozano R, Cañas LA, Beltrán JP, Gómez-Mena C (2017) The parthenocarpic hydra mutant reveals a new function for a SPOROCYTELESS-like gene in the control of fruit set in tomato. New Phytol 214:1198–1212 es_ES
dc.description.references Rojas-Gracia P, Roque E, Medina M, López-Martín MJ, Cañas LA, Beltrán JP, Gómez-Mena C (2019) The DOF transcription factor SlDOF10 regulates vascular tissue formation during ovary development in tomato. Front Plant Sci 10:216 es_ES
dc.description.references Roque E, Gómez MD, Ellul P, Wallbraun M, Madueño F, Beltrán JP, Cañas LA (2007) The PsEND1 promoter: a novel tool to produce genetically engineered male-sterile plants by early anther ablation. Plant Cell Rep 26:313–325 es_ES
dc.description.references Roque E, Gómez-Mena C, Hamza R, Beltrán JP, Cañas LA (2019) Engineered male sterility by early anther ablation using the Pea anther-specific promoter PsEND1. Front Plant Sci 10:819 es_ES
dc.description.references Rottmann WH, Meilan R, Sheppard LA, Brunner AM, Skinner JS, Cheng S, Jouanin L, Pilate G, Strauss SH (2000) Diverse effects of overexpression of LEAFY and PTLF, a poplar (Populus) homolog of LEAFY/FLORICAULA, in transgenic poplar and Arabidopsis. Plant J 22:235–245 es_ES
dc.description.references Rozen S, Skaletsky HJ (2000) Primer3 on the WWW for general users and for biologist programmers. In: Krawetz S, Misener S (eds) Bioinformatics methods and protocols: methods in molecular biology. Humana Press, Totowa, pp 365–386 es_ES
dc.description.references Sanders PM, Bui AQ, Weterings K, McIntire KN, Hsu YC, Lee PY, Truong MT, Beals TP, Goldberg RB (1999) Anther developmental defects in Arabidopsis thaliana male-sterile mutants. Sex Plant Reprod 11:297–322 es_ES
dc.description.references Shen L, Chen Y, Su X, Zhang S, Pan H, Huang M (2012) Two FT orthologs from Populus simonii Carrière induce early flowering in Arabidopsis and poplar trees. Plant Cell Tissue Org Cult 108:371–379 es_ES
dc.description.references Skinner JS, Meilan R, Ma C, Strauss SH (2003) The Populus PTD promoter imparts floral-predominant expression and enables high levels of floral–organablation in Populus, Nicotiana, and Arabidopsis. Mol Breed 12:119–132 es_ES
dc.description.references Smith EF, Townsend CO (1907) A plant tumor of bacterial origin. Science 25:671473 es_ES
dc.description.references Tränkner C, Lehmann S, Hoenicka H, Hanke M-V, Fladung M, Lehnhardt D, Dunemann F, Gau A, Schlangen K, Malnoy M, Flachowsky H (2010) Over-expression of an FT-homologous gene of apple induces early flowering in annual and perennial plants. Planta 232:1309–1324 es_ES
dc.description.references Weigel D, Nilsson O (1995) A developmental switch sufficient for flower initiation in diverse plants. Nature 377:495–500 es_ES
dc.description.references Wildholm JM (1972) The use of fluorescein diacetate and phenosafranine for determining viability of cultured plant cells. Stain Technol 47:189–194 es_ES
dc.description.references WWF (2015) WWF living forests report: chapter 5: saving forests at risk. Gland: WWF- WorldWide Fund for Nature. https://www.worldwildlife.org/publications/living-forests-report-chapter-5-saving-forests-at-risk. Accessed Jan 2020 es_ES
dc.description.references Xiaoming J, Huanling Z (2014) FT gene with a CaMV35S promoter to control early flowering of transgenic poplar. J Zhejiang A&F 31:404–409 es_ES
dc.description.references Xiaoming J, Hualing Z, Jungfeng F (2011) System optimization of precociously flowering of poplar induced by FT gene controlled by a heat shock promoter. Sci Silvae Sin 47:37–43 es_ES
dc.description.references Zhang H, Harry DE, Yuceer C, Hsu CY, Vikram V, Shevchenko O, Etherington E, Strauss SH (2010) Precocious flowering in trees: the FLOWERING LOCUS T gene as a research and breeding tool in Populus. J Exp Bot 61:2549–2560 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem