- -

Efficient evaluation of a gene containment system for poplar through early flowering induction

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Efficient evaluation of a gene containment system for poplar through early flowering induction

Mostrar el registro completo del ítem

Briones, MV.; Hoenicka, H.; Cañas Clemente, LA.; Beltran Porter, JP.; Hanelt, D.; Sharry, S.; Fladung, M. (2020). Efficient evaluation of a gene containment system for poplar through early flowering induction. Plant Cell Reports. 39(5):577-587. https://doi.org/10.1007/s00299-020-02515-1

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/176109

Ficheros en el ítem

Metadatos del ítem

Título: Efficient evaluation of a gene containment system for poplar through early flowering induction
Autor: Briones, M. Valentina Hoenicka, Hans Cañas Clemente, Luís Antonio BELTRAN PORTER, JOSE PIO Hanelt, Dieter Sharry, Sandra Fladung, Matthias
Entidad UPV: Universitat Politècnica de València. Instituto Universitario Mixto de Biología Molecular y Celular de Plantas - Institut Universitari Mixt de Biologia Molecular i Cel·lular de Plantes
Fecha difusión:
Resumen:
[EN] Key message The early flowering system HSP::AtFT allowed a fast evaluation of a gene containment system based on the construct PsEND1::barnase-barstar for poplar. Transgenic lines showed disturbed pollen development ...[+]
Palabras clave: Gene containment , Early fowering , Genetic transformation , Populus , PsEND1 , Biosafety
Derechos de uso: Reconocimiento (by)
Fuente:
Plant Cell Reports. (issn: 0721-7714 )
DOI: 10.1007/s00299-020-02515-1
Editorial:
Springer-Verlag
Versión del editor: https://doi.org/10.1007/s00299-020-02515-1
Agradecimientos:
Open Access funding provided by Projekt DEAL. This work was funded with a scholarship by the Deutscher Akademischer Austauschdienst (DAAD). We thank S. Bein, D. Ebbinghaus, and A. Worm for helpful technical assistance in ...[+]
Tipo: Artículo

References

Al-Ahmad H (2018) Biotechnology for bioenergy dedicated trees: meeting future energy demands. Z Naturforsch 73:15–32. https://doi.org/10.1515/znc-2016-0185

Beltrán JP, Roque E, Medina M, Madueño F, Gómez MD, Cañas LA (2007) Androesterilidad inducida mediante ingeniería genética. Fundamentos y aplicaciones biotecnológicas. An R Acad Nac Farm 73:1237–1264

Böhlenius H, Huang T, Charbonnel-Campaa L, Brunner AM, Jansson S, Strauss SH, Nilsson O (2006) CO/FT regulatory module controls timing of flowering and seasonal growth cessation in trees. Science 312:1040–1043 [+]
Al-Ahmad H (2018) Biotechnology for bioenergy dedicated trees: meeting future energy demands. Z Naturforsch 73:15–32. https://doi.org/10.1515/znc-2016-0185

Beltrán JP, Roque E, Medina M, Madueño F, Gómez MD, Cañas LA (2007) Androesterilidad inducida mediante ingeniería genética. Fundamentos y aplicaciones biotecnológicas. An R Acad Nac Farm 73:1237–1264

Böhlenius H, Huang T, Charbonnel-Campaa L, Brunner AM, Jansson S, Strauss SH, Nilsson O (2006) CO/FT regulatory module controls timing of flowering and seasonal growth cessation in trees. Science 312:1040–1043

Brunner AM, Varkonyi-Gasic E, Jones RC (2017) Phase change and phenology in trees. In: Groover A, Cronk Q (eds) Comparative and evolutionary genomics of Angiosperm trees. Springer, Cham, pp 227–274. https://doi.org/10.1007/7397_2016_30

Chang YY, Wang AY, Cronan JE (1993) Molecular cloning, DNA sequencing, and biochemical analyses of Escherichia coli glyoxylate carboligase. An enzyme of the acetohydroxy acid synthase-pyruvate oxidase family. J Biol Chem 268:3911–3919

Dumolin S, Demesure B, Petit RJ (1995) Inheritance of chloroplast and mitochondrial genomes in pedunculate oak investigated with an efficient PCR method. Theor Appl Genet 91:1253–1256

Elorriaga E, Meilan R, Ma C, Skinner JS, Etherington E, Brunner AM, Strauss SH (2014) A tapetal ablation transgene induces stable male sterility and slows field growth in Populus. Tree Gen Gen 10:1583–1593

Elorriaga E, Klocko AL, Ma C, Strauss SH (2018) Variation in mutation spectra among CRISPR/Cas9 mutagenized poplars. Front Plant Sci 9:594. https://doi.org/10.3389/fpls.2018.00594

Fladung M, Ahuja M (1995) Sandwich method for non-radioactive hybridisations. Biotechniques 18:800–802

Fladung M, Muhs HJ, Ahuja MR (1996) Morphological changes observed in transgenic Populus carrying the rolC gene from Agrobacterium rhizogenes. Silv Genet 45:349–354

Fladung M, Kumar S, Ahuja MR (1997) Genetic transformation of Populus genotypes with different chimaeric gene constructs: transformation efficiency and molecular analysis. Transgenic Res 6:111–121

Fritsche S, Klocko AL, Boron A, Brunner AM, Thorlby G (2018) Strategies for engineering reproductive sterility in plantation forests. Front Plant Sci 9:1671. https://doi.org/10.3389/fpls.2018.01671

García-Sogo B, Pineda B, Castelblanque L, Antón T, Medina M, Roque E, Torresi C, Beltrán JP, Moreno V, Cañas LA (2010) Efficient transformation of Kalanchoe blossfeldiana and production of male-sterile plants by engineered anther ablation. Plant Cell Rep 29:61–77

García-Sogo B, Pineda B, Roque E, Atarés A, Antón T, Beltrán JP, Moreno V, Cañas LA (2012) Production of engineered long-life and male sterile Pelargonium plants. BMC Plant Biol 12:156–162

Gardner N, Felsheim R, Smith AG (2009) Production of male- and female-sterile plants through reproductive tissue ablation. J Plant Physiol 166(8):871–881

Gómez MD, Beltrán JP, Cañas LA (2004) The pea END1 promoter drives anther-specific gene expression in different plant species. Planta 219:967–981

Hartley RW (1988) Barnase and barstar expression of its cloned inhibitor permits expression of a cloned ribonuclease. J Mol Biol 202:913–915

Hoenicka H, Fladung M (2006) Biosafety in Populus spp. and other forest trees: from non-native species to taxa derived from traditional breeding and genetic engineering. Trees 20:131–144

Hoenicka H, Nowitzki O, Debener T, Fladung M (2006) Faster evaluation of sterility strategies in transgenic trees. Silv Genet 55:285–291

Hoenicka H, Lehnhardt D, Polak O, Fladung M (2012) Early flowering and genetic containment studies in transgenic poplar. iForest 5:138–146

Hoenicka H, Lehnhardt D, Nilsson O, Hanelt D, Fladung M (2014) Successful crossings with early flowering transgenic poplar: interspecific crossings, but not transgenesis, promoted aberrant phenotypes in offspring. Plant Biotechnol J 12:1066–1074

Hoenicka H, Lehnhardt D, Briones V, Nilsson O, Fladung M (2016) Low temperatures are required to induce the development of fertile flowers in transgenic male and female early flowering poplar (Populus tremula L.). Tree Physiol 36:667–677. https://doi.org/10.1093/treephys/tpw015

Hsu CY, Liu YX, Luthe DS, Yuceer C (2006) Poplar FT2 shortens the juvenile phase and promotes seasonal flowering. Plant Cell 18:1846–1861

Klocko AL, Brunner AM, Huang J, Meilan R, Lu H, Strauss SH (2016) Containment of transgenic trees by suppression of LEAFY. Nat Biotechnol 34:918–922. https://doi.org/10.1038/nbt.3636

Klocko AL, Lu H, Magnuson A, Brunner AM, Ma C, Strauss SH (2018) Phenotypic expression and stability in a large-scale field study of genetically engineered poplars containing sexual containment transgenes. Front Bioeng Biotechnol 6:100. https://doi.org/10.3389/fbioe.2018.00100

Lännenpää M, Hassinen M, Ranki A, Hölttä-Vuori M, Lemmetyinen J, Keinonen K, Sopanen T (2005) Prevention of flower development in birch and other plants using a BpFULL1:BARNASE construct. Plant Cell Rep 24(2):69–78

Lloyd G, McCown B (1980) Commercially-feasible micropropagation of mountain laurel, Kalmia latifolia, by use of shoot-tip culture. Comb Proc Int Plant Prop Soc 30:421–427

Lu S, Yi S, Zhang J, Liu L, Bao M, Liu G (2019) Isolation and functional characterization of the promoter of SEPALLATA3 gene in London plane and its application in genetic engineering of sterility. Plant Cell Tiss Org Cult 136:109–121

Mariani C, Gossele V, De Beuckeleer M, De Block M, Goldberg RB, De Greef W, Leemans J (1992) A chimaeric ribonuclease inhibitor gene restores fertility to male sterile plants. Nature 357:384–387

Medina M, Roque E, Pineda B, Cañas LA, Rodríguez-Concepción M, Beltrán JP, Gómez-Mena C (2013) Early anther ablation triggers parthenocarpic fruit development in tomato plants. Plant Biotechnol J 11:770–779

Meilan R, Brunner A, Skinner J, Strauss SH (2001) Modification of flowering in transgenic trees. In: Komamine A, Morohoshi N (eds) Molecular breeding of woody plants. Elsevier Science BV, Amsterdam, pp 247–256

Paddon CJ, Hartley RW (1986) Cloning, sequencing and transcription of an inactivated copy of Bacillus amyloliquefaciens extracellular ribonuclease (barnase). Gene 40(2–3):231–239. https://doi.org/10.1016/0378-1119(85)90045-9

Parmentier-Line CM, Coleman GD (2016) Constitutive expression of the poplar FD-like basic leucine zipper transcription factor alters growth and bud development. Plant Biotechnol J 14:260–270

Pistón F, García C, de la Viña G, Beltrán JP, Cañas LA, Barro F (2008) The pea PsEND1 promoter drives the expression of GUS in transgenic wheat at the binucleate microspores stage and during pollen tube development. Mol Breed 21:401–405

Rojas-Gracia P, Roque E, Medina M, Rochina M, Hamza R, Angarita-Díaz P, Moremo V, Pérez-Martín F, Lozano R, Cañas LA, Beltrán JP, Gómez-Mena C (2017) The parthenocarpic hydra mutant reveals a new function for a SPOROCYTELESS-like gene in the control of fruit set in tomato. New Phytol 214:1198–1212

Rojas-Gracia P, Roque E, Medina M, López-Martín MJ, Cañas LA, Beltrán JP, Gómez-Mena C (2019) The DOF transcription factor SlDOF10 regulates vascular tissue formation during ovary development in tomato. Front Plant Sci 10:216

Roque E, Gómez MD, Ellul P, Wallbraun M, Madueño F, Beltrán JP, Cañas LA (2007) The PsEND1 promoter: a novel tool to produce genetically engineered male-sterile plants by early anther ablation. Plant Cell Rep 26:313–325

Roque E, Gómez-Mena C, Hamza R, Beltrán JP, Cañas LA (2019) Engineered male sterility by early anther ablation using the Pea anther-specific promoter PsEND1. Front Plant Sci 10:819

Rottmann WH, Meilan R, Sheppard LA, Brunner AM, Skinner JS, Cheng S, Jouanin L, Pilate G, Strauss SH (2000) Diverse effects of overexpression of LEAFY and PTLF, a poplar (Populus) homolog of LEAFY/FLORICAULA, in transgenic poplar and Arabidopsis. Plant J 22:235–245

Rozen S, Skaletsky HJ (2000) Primer3 on the WWW for general users and for biologist programmers. In: Krawetz S, Misener S (eds) Bioinformatics methods and protocols: methods in molecular biology. Humana Press, Totowa, pp 365–386

Sanders PM, Bui AQ, Weterings K, McIntire KN, Hsu YC, Lee PY, Truong MT, Beals TP, Goldberg RB (1999) Anther developmental defects in Arabidopsis thaliana male-sterile mutants. Sex Plant Reprod 11:297–322

Shen L, Chen Y, Su X, Zhang S, Pan H, Huang M (2012) Two FT orthologs from Populus simonii Carrière induce early flowering in Arabidopsis and poplar trees. Plant Cell Tissue Org Cult 108:371–379

Skinner JS, Meilan R, Ma C, Strauss SH (2003) The Populus PTD promoter imparts floral-predominant expression and enables high levels of floral–organablation in Populus, Nicotiana, and Arabidopsis. Mol Breed 12:119–132

Smith EF, Townsend CO (1907) A plant tumor of bacterial origin. Science 25:671473

Tränkner C, Lehmann S, Hoenicka H, Hanke M-V, Fladung M, Lehnhardt D, Dunemann F, Gau A, Schlangen K, Malnoy M, Flachowsky H (2010) Over-expression of an FT-homologous gene of apple induces early flowering in annual and perennial plants. Planta 232:1309–1324

Weigel D, Nilsson O (1995) A developmental switch sufficient for flower initiation in diverse plants. Nature 377:495–500

Wildholm JM (1972) The use of fluorescein diacetate and phenosafranine for determining viability of cultured plant cells. Stain Technol 47:189–194

WWF (2015) WWF living forests report: chapter 5: saving forests at risk. Gland: WWF- WorldWide Fund for Nature. https://www.worldwildlife.org/publications/living-forests-report-chapter-5-saving-forests-at-risk. Accessed Jan 2020

Xiaoming J, Huanling Z (2014) FT gene with a CaMV35S promoter to control early flowering of transgenic poplar. J Zhejiang A&F 31:404–409

Xiaoming J, Hualing Z, Jungfeng F (2011) System optimization of precociously flowering of poplar induced by FT gene controlled by a heat shock promoter. Sci Silvae Sin 47:37–43

Zhang H, Harry DE, Yuceer C, Hsu CY, Vikram V, Shevchenko O, Etherington E, Strauss SH (2010) Precocious flowering in trees: the FLOWERING LOCUS T gene as a research and breeding tool in Populus. J Exp Bot 61:2549–2560

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem