- -

Order spectrum of the Cesàro operator in Banach lattice sequence spaces

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Order spectrum of the Cesàro operator in Banach lattice sequence spaces

Mostrar el registro completo del ítem

Bonet Solves, JA.; Ricker, WJ. (2020). Order spectrum of the Cesàro operator in Banach lattice sequence spaces. Positivity. 24(3):593-603. https://doi.org/10.1007/s11117-019-00699-9

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/176110

Ficheros en el ítem

Metadatos del ítem

Título: Order spectrum of the Cesàro operator in Banach lattice sequence spaces
Autor: Bonet Solves, José Antonio Ricker, Werner J.
Entidad UPV: Universitat Politècnica de València. Departamento de Matemática Aplicada - Departament de Matemàtica Aplicada
Fecha difusión:
Resumen:
[EN] The discrete Cesàro operator C acts continuously in various classical Banach sequence spaces within CN. For the coordinatewise order, many such sequence spaces X are also complex Banach lattices [eg. c0,¿p for 1<p¿¿, ...[+]
Palabras clave: Banach algebra , Banach sequence space , Cesàro operator , Spectrum , Order spectrum
Derechos de uso: Reserva de todos los derechos
Fuente:
Positivity. (issn: 1385-1292 )
DOI: 10.1007/s11117-019-00699-9
Editorial:
Springer-Verlag
Versión del editor: https://doi.org/10.1007/s11117-019-00699-9
Código del Proyecto:
info:eu-repo/grantAgreement/AGENCIA ESTATAL DE INVESTIGACION//MTM2016-76647-P//ANALISIS FUNCIONAL, TEORIA DE OPERADORES Y ANALISIS TIEMPO-FRECUENCIA/
info:eu-repo/grantAgreement/GENERALITAT VALENCIANA//PROMETEO%2F2017%2F102//ANALISIS FUNCIONAL, TEORIA DE OPERADORES Y APLICACIONES./
Agradecimientos:
The research of the first author (J. Bonet) was partially supported by the Projects MTM2016-76647-P and GV Prometeo 2017/102 (Spain).
Tipo: Artículo

References

Albanese, A.A., Bonet, J., Ricker, W.J.: Spectrum and compactness of the Cesàro operator on weighted $$ \ell _p$$ spaces. J. Aust. Math. Soc. 99, 287–314 (2015)

Albanese, A.A., Bonet, J., Ricker, W.J.: Mean ergodicity and spectrum of the Cesàro operator on weighted $$ c_0$$ spaces. Positivity 20, 761–803 (2016)

Arendt, W.: On the o-spectrum of regular operators and the spectrum of measures. Math. Z. 178, 271–287 (1981) [+]
Albanese, A.A., Bonet, J., Ricker, W.J.: Spectrum and compactness of the Cesàro operator on weighted $$ \ell _p$$ spaces. J. Aust. Math. Soc. 99, 287–314 (2015)

Albanese, A.A., Bonet, J., Ricker, W.J.: Mean ergodicity and spectrum of the Cesàro operator on weighted $$ c_0$$ spaces. Positivity 20, 761–803 (2016)

Arendt, W.: On the o-spectrum of regular operators and the spectrum of measures. Math. Z. 178, 271–287 (1981)

Bennett, G.: Factorizing the classical inequalities. Mem. Am. Math. Soc. 120(576), 1–130 (1996)

Bonsall, F.F., Duncan, J.: Complete Normed Algebras. Springer, Heidelberg (1973)

Curbera, G.P., Ricker, W.J.: Spectrum of the Cesàro operator in $$ \ell ^p $$. Arch. Math. (Basel) 100, 267–271 (2013)

Curbera, G.P., Ricker, W.J.: Solid extensions of the Cesàro operator on the Hardy space $$ H^2 ({\mathbb{D}})$$. J. Math. Anal. Appl. 407, 387–397 (2013)

Curbera, G.P., Ricker, W.J.: Solid extensions of the Cesàro operator on $$ \ell ^p$$ and $$ c_0$$. Integral Equ. Oper. Theory 80, 61–77 (2014)

de Pagter, B., Ricker, W.J.: Algebras of multiplication operators in Banach function spaces. J. Oper. Theory 42, 245–267 (1999)

Fremlin, D.H.: Topological Riesz Spaces and Measure Theory. Cambridge University Press, Cambridge (1974)

Hardy, G.H., Littlewood, J.E., Polya, G.: Inequalities, 2nd edn. Cambridge University Press, Cambridge (1964)

Leibowitz, G.: Spectra of discrete Cesàro operators. Tamkang J. Math. 3, 123–132 (1972)

Leibowitz, G.: Discrete Hausdorff transformations. Proc. Am. Math. Soc. 38, 541–544 (1973)

Reade, J.B.: On the spectrum of the Cesàro operator. Bull. Lond. Math. Soc. 17, 263–267 (1985)

Rhoades, B.E.: Spectra of some Hausdorff matrices. Acta Sci. Math. (Szeged) 32, 91–100 (1971)

Rhoades, B.E.: Generalized Hausdorff matrices bounded on $$ \ell ^p $$ and $$c$$. Acta Sci. Math. (Szeged) 43, 333–345 (1981)

Schaefer, H.H.: Banach Lattices and Positive Operators. Springer, Berlin (1974)

Schaefer, H.H.: On the o-spectrum of order bounded operators. Math. Z. 154, 79–84 (1977)

Taylor, A.E.: Introduction to Functional Analysis. Wiley, New York (1958)

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem