- -

Order spectrum of the Cesàro operator in Banach lattice sequence spaces

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Order spectrum of the Cesàro operator in Banach lattice sequence spaces

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Bonet Solves, José Antonio es_ES
dc.contributor.author Ricker, Werner J. es_ES
dc.date.accessioned 2021-11-05T12:36:54Z
dc.date.available 2021-11-05T12:36:54Z
dc.date.issued 2020-07 es_ES
dc.identifier.issn 1385-1292 es_ES
dc.identifier.uri http://hdl.handle.net/10251/176110
dc.description.abstract [EN] The discrete Cesàro operator C acts continuously in various classical Banach sequence spaces within CN. For the coordinatewise order, many such sequence spaces X are also complex Banach lattices [eg. c0,¿p for 1<p¿¿, and ces(p) for p¿{0}¿(1,¿)]. In such Banach lattice sequence spaces, C is always a positive operator. Hence, its order spectrum is well defined within the Banach algebra of all regular operators on X. The purpose of this note is to show, for every X belonging to the above list of Banach lattice sequence spaces, that the order spectrum ¿o(C) of Ccoincides with its usual spectrum ¿(C) when C is considered as a continuous linear operator on the Banach space X. es_ES
dc.description.sponsorship The research of the first author (J. Bonet) was partially supported by the Projects MTM2016-76647-P and GV Prometeo 2017/102 (Spain). es_ES
dc.language Inglés es_ES
dc.publisher Springer-Verlag es_ES
dc.relation.ispartof Positivity es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Banach algebra es_ES
dc.subject Banach sequence space es_ES
dc.subject Cesàro operator es_ES
dc.subject Spectrum es_ES
dc.subject Order spectrum es_ES
dc.subject.classification MATEMATICA APLICADA es_ES
dc.title Order spectrum of the Cesàro operator in Banach lattice sequence spaces es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1007/s11117-019-00699-9 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/AGENCIA ESTATAL DE INVESTIGACION//MTM2016-76647-P//ANALISIS FUNCIONAL, TEORIA DE OPERADORES Y ANALISIS TIEMPO-FRECUENCIA/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/GENERALITAT VALENCIANA//PROMETEO%2F2017%2F102//ANALISIS FUNCIONAL, TEORIA DE OPERADORES Y APLICACIONES./ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Matemática Aplicada - Departament de Matemàtica Aplicada es_ES
dc.description.bibliographicCitation Bonet Solves, JA.; Ricker, WJ. (2020). Order spectrum of the Cesàro operator in Banach lattice sequence spaces. Positivity. 24(3):593-603. https://doi.org/10.1007/s11117-019-00699-9 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1007/s11117-019-00699-9 es_ES
dc.description.upvformatpinicio 593 es_ES
dc.description.upvformatpfin 603 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 24 es_ES
dc.description.issue 3 es_ES
dc.relation.pasarela S\427765 es_ES
dc.contributor.funder GENERALITAT VALENCIANA es_ES
dc.contributor.funder AGENCIA ESTATAL DE INVESTIGACION es_ES
dc.description.references Albanese, A.A., Bonet, J., Ricker, W.J.: Spectrum and compactness of the Cesàro operator on weighted $$ \ell _p$$ spaces. J. Aust. Math. Soc. 99, 287–314 (2015) es_ES
dc.description.references Albanese, A.A., Bonet, J., Ricker, W.J.: Mean ergodicity and spectrum of the Cesàro operator on weighted $$ c_0$$ spaces. Positivity 20, 761–803 (2016) es_ES
dc.description.references Arendt, W.: On the o-spectrum of regular operators and the spectrum of measures. Math. Z. 178, 271–287 (1981) es_ES
dc.description.references Bennett, G.: Factorizing the classical inequalities. Mem. Am. Math. Soc. 120(576), 1–130 (1996) es_ES
dc.description.references Bonsall, F.F., Duncan, J.: Complete Normed Algebras. Springer, Heidelberg (1973) es_ES
dc.description.references Curbera, G.P., Ricker, W.J.: Spectrum of the Cesàro operator in $$ \ell ^p $$. Arch. Math. (Basel) 100, 267–271 (2013) es_ES
dc.description.references Curbera, G.P., Ricker, W.J.: Solid extensions of the Cesàro operator on the Hardy space $$ H^2 ({\mathbb{D}})$$. J. Math. Anal. Appl. 407, 387–397 (2013) es_ES
dc.description.references Curbera, G.P., Ricker, W.J.: Solid extensions of the Cesàro operator on $$ \ell ^p$$ and $$ c_0$$. Integral Equ. Oper. Theory 80, 61–77 (2014) es_ES
dc.description.references de Pagter, B., Ricker, W.J.: Algebras of multiplication operators in Banach function spaces. J. Oper. Theory 42, 245–267 (1999) es_ES
dc.description.references Fremlin, D.H.: Topological Riesz Spaces and Measure Theory. Cambridge University Press, Cambridge (1974) es_ES
dc.description.references Hardy, G.H., Littlewood, J.E., Polya, G.: Inequalities, 2nd edn. Cambridge University Press, Cambridge (1964) es_ES
dc.description.references Leibowitz, G.: Spectra of discrete Cesàro operators. Tamkang J. Math. 3, 123–132 (1972) es_ES
dc.description.references Leibowitz, G.: Discrete Hausdorff transformations. Proc. Am. Math. Soc. 38, 541–544 (1973) es_ES
dc.description.references Reade, J.B.: On the spectrum of the Cesàro operator. Bull. Lond. Math. Soc. 17, 263–267 (1985) es_ES
dc.description.references Rhoades, B.E.: Spectra of some Hausdorff matrices. Acta Sci. Math. (Szeged) 32, 91–100 (1971) es_ES
dc.description.references Rhoades, B.E.: Generalized Hausdorff matrices bounded on $$ \ell ^p $$ and $$c$$. Acta Sci. Math. (Szeged) 43, 333–345 (1981) es_ES
dc.description.references Schaefer, H.H.: Banach Lattices and Positive Operators. Springer, Berlin (1974) es_ES
dc.description.references Schaefer, H.H.: On the o-spectrum of order bounded operators. Math. Z. 154, 79–84 (1977) es_ES
dc.description.references Taylor, A.E.: Introduction to Functional Analysis. Wiley, New York (1958) es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem