Mostrar el registro sencillo del ítem
dc.contributor.author | Bonet Solves, José Antonio | es_ES |
dc.contributor.author | Ricker, Werner J. | es_ES |
dc.date.accessioned | 2021-11-05T12:36:54Z | |
dc.date.available | 2021-11-05T12:36:54Z | |
dc.date.issued | 2020-07 | es_ES |
dc.identifier.issn | 1385-1292 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/176110 | |
dc.description.abstract | [EN] The discrete Cesàro operator C acts continuously in various classical Banach sequence spaces within CN. For the coordinatewise order, many such sequence spaces X are also complex Banach lattices [eg. c0,¿p for 1<p¿¿, and ces(p) for p¿{0}¿(1,¿)]. In such Banach lattice sequence spaces, C is always a positive operator. Hence, its order spectrum is well defined within the Banach algebra of all regular operators on X. The purpose of this note is to show, for every X belonging to the above list of Banach lattice sequence spaces, that the order spectrum ¿o(C) of Ccoincides with its usual spectrum ¿(C) when C is considered as a continuous linear operator on the Banach space X. | es_ES |
dc.description.sponsorship | The research of the first author (J. Bonet) was partially supported by the Projects MTM2016-76647-P and GV Prometeo 2017/102 (Spain). | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | Springer-Verlag | es_ES |
dc.relation.ispartof | Positivity | es_ES |
dc.rights | Reserva de todos los derechos | es_ES |
dc.subject | Banach algebra | es_ES |
dc.subject | Banach sequence space | es_ES |
dc.subject | Cesàro operator | es_ES |
dc.subject | Spectrum | es_ES |
dc.subject | Order spectrum | es_ES |
dc.subject.classification | MATEMATICA APLICADA | es_ES |
dc.title | Order spectrum of the Cesàro operator in Banach lattice sequence spaces | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1007/s11117-019-00699-9 | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/AGENCIA ESTATAL DE INVESTIGACION//MTM2016-76647-P//ANALISIS FUNCIONAL, TEORIA DE OPERADORES Y ANALISIS TIEMPO-FRECUENCIA/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/GENERALITAT VALENCIANA//PROMETEO%2F2017%2F102//ANALISIS FUNCIONAL, TEORIA DE OPERADORES Y APLICACIONES./ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Matemática Aplicada - Departament de Matemàtica Aplicada | es_ES |
dc.description.bibliographicCitation | Bonet Solves, JA.; Ricker, WJ. (2020). Order spectrum of the Cesàro operator in Banach lattice sequence spaces. Positivity. 24(3):593-603. https://doi.org/10.1007/s11117-019-00699-9 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.1007/s11117-019-00699-9 | es_ES |
dc.description.upvformatpinicio | 593 | es_ES |
dc.description.upvformatpfin | 603 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 24 | es_ES |
dc.description.issue | 3 | es_ES |
dc.relation.pasarela | S\427765 | es_ES |
dc.contributor.funder | GENERALITAT VALENCIANA | es_ES |
dc.contributor.funder | AGENCIA ESTATAL DE INVESTIGACION | es_ES |
dc.description.references | Albanese, A.A., Bonet, J., Ricker, W.J.: Spectrum and compactness of the Cesàro operator on weighted $$ \ell _p$$ spaces. J. Aust. Math. Soc. 99, 287–314 (2015) | es_ES |
dc.description.references | Albanese, A.A., Bonet, J., Ricker, W.J.: Mean ergodicity and spectrum of the Cesàro operator on weighted $$ c_0$$ spaces. Positivity 20, 761–803 (2016) | es_ES |
dc.description.references | Arendt, W.: On the o-spectrum of regular operators and the spectrum of measures. Math. Z. 178, 271–287 (1981) | es_ES |
dc.description.references | Bennett, G.: Factorizing the classical inequalities. Mem. Am. Math. Soc. 120(576), 1–130 (1996) | es_ES |
dc.description.references | Bonsall, F.F., Duncan, J.: Complete Normed Algebras. Springer, Heidelberg (1973) | es_ES |
dc.description.references | Curbera, G.P., Ricker, W.J.: Spectrum of the Cesàro operator in $$ \ell ^p $$. Arch. Math. (Basel) 100, 267–271 (2013) | es_ES |
dc.description.references | Curbera, G.P., Ricker, W.J.: Solid extensions of the Cesàro operator on the Hardy space $$ H^2 ({\mathbb{D}})$$. J. Math. Anal. Appl. 407, 387–397 (2013) | es_ES |
dc.description.references | Curbera, G.P., Ricker, W.J.: Solid extensions of the Cesàro operator on $$ \ell ^p$$ and $$ c_0$$. Integral Equ. Oper. Theory 80, 61–77 (2014) | es_ES |
dc.description.references | de Pagter, B., Ricker, W.J.: Algebras of multiplication operators in Banach function spaces. J. Oper. Theory 42, 245–267 (1999) | es_ES |
dc.description.references | Fremlin, D.H.: Topological Riesz Spaces and Measure Theory. Cambridge University Press, Cambridge (1974) | es_ES |
dc.description.references | Hardy, G.H., Littlewood, J.E., Polya, G.: Inequalities, 2nd edn. Cambridge University Press, Cambridge (1964) | es_ES |
dc.description.references | Leibowitz, G.: Spectra of discrete Cesàro operators. Tamkang J. Math. 3, 123–132 (1972) | es_ES |
dc.description.references | Leibowitz, G.: Discrete Hausdorff transformations. Proc. Am. Math. Soc. 38, 541–544 (1973) | es_ES |
dc.description.references | Reade, J.B.: On the spectrum of the Cesàro operator. Bull. Lond. Math. Soc. 17, 263–267 (1985) | es_ES |
dc.description.references | Rhoades, B.E.: Spectra of some Hausdorff matrices. Acta Sci. Math. (Szeged) 32, 91–100 (1971) | es_ES |
dc.description.references | Rhoades, B.E.: Generalized Hausdorff matrices bounded on $$ \ell ^p $$ and $$c$$. Acta Sci. Math. (Szeged) 43, 333–345 (1981) | es_ES |
dc.description.references | Schaefer, H.H.: Banach Lattices and Positive Operators. Springer, Berlin (1974) | es_ES |
dc.description.references | Schaefer, H.H.: On the o-spectrum of order bounded operators. Math. Z. 154, 79–84 (1977) | es_ES |
dc.description.references | Taylor, A.E.: Introduction to Functional Analysis. Wiley, New York (1958) | es_ES |