Mostrar el registro sencillo del ítem
dc.contributor.author | Gomez-Orts, Esther | es_ES |
dc.date.accessioned | 2021-11-05T12:51:50Z | |
dc.date.available | 2021-11-05T12:51:50Z | |
dc.date.issued | 2020-09-05 | es_ES |
dc.identifier.issn | 1578-7303 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/176141 | |
dc.description.abstract | [EN] We investigate the continuity, compactness and invertibility of weighted composition operators W-psi,W-phi: f -> psi(f circle phi) when they act on the classical Korenblum space A(-infinity) and other related Frechet or (LB)-spaces of analytic functions on the open unit disc which are defined as intersections or unions of weighted Banach spaces with sup-norms. Some results about the spectrum of these operators are presented in case the self-map phi has a fixed point in the unit disc. A precise description of the spectrum is obtained in this case when the operator acts on the Korenblum space. | es_ES |
dc.description.sponsorship | This research was partially supported by the research project MTM2016-76647-P and the grant BES-2017-081200. | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | Springer-Verlag | es_ES |
dc.relation.ispartof | Revista de la Real Academia de Ciencias Exactas Físicas y Naturales Serie A Matemáticas | es_ES |
dc.rights | Reserva de todos los derechos | es_ES |
dc.subject | Weighted composition operator | es_ES |
dc.subject | Compact operator | es_ES |
dc.subject | Spectrum | es_ES |
dc.subject | Analytic functions | es_ES |
dc.subject | Growth Banach spaces | es_ES |
dc.subject | Korenblum space | es_ES |
dc.subject | Frechet spaces | es_ES |
dc.subject | (LB)-spaces | es_ES |
dc.subject.classification | MATEMATICA APLICADA | es_ES |
dc.title | Weighted composition operators on Korenblum type spaces of analytic functions | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1007/s13398-020-00924-1 | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/AGENCIA ESTATAL DE INVESTIGACION//MTM2016-76647-P//ANALISIS FUNCIONAL, TEORIA DE OPERADORES Y ANALISIS TIEMPO-FRECUENCIA/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/AEI//BES-2017-081200//AYUDAS PARA CONTRATOS PREDOCTORALES PARA LA FORMACION DE DOCTORES-GOMEZ ORTS. PROYECTO: ANALISIS FUNCIONAL, TEORIA DE OPERADORES Y ANALISIS TIEMPO-FRECUENCIA/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Instituto Universitario de Matemática Pura y Aplicada - Institut Universitari de Matemàtica Pura i Aplicada | es_ES |
dc.description.bibliographicCitation | Gomez-Orts, E. (2020). Weighted composition operators on Korenblum type spaces of analytic functions. Revista de la Real Academia de Ciencias Exactas Físicas y Naturales Serie A Matemáticas. 114(4):1-15. https://doi.org/10.1007/s13398-020-00924-1 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.1007/s13398-020-00924-1 | es_ES |
dc.description.upvformatpinicio | 1 | es_ES |
dc.description.upvformatpfin | 15 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 114 | es_ES |
dc.description.issue | 4 | es_ES |
dc.relation.pasarela | S\423513 | es_ES |
dc.contributor.funder | AGENCIA ESTATAL DE INVESTIGACION | es_ES |
dc.description.references | Abramovich, Y.A., Aliprantis, C.D.: An invitation to operator theory. Graduate Studies in Mathematics. Amer. Math. Soc., 50 (2002) | es_ES |
dc.description.references | Albanese, A.A., Bonet, J., Ricker, W.J.: The Cesàro operator in the Fréchet spaces $$\ell ^{p+}$$ and $$L^{p-}$$. Glasgow Math. J. 59, 273–287 (2017) | es_ES |
dc.description.references | Albanese, A.A., Bonet, J., Ricker, W.J.: The Cesàro operator on Korenblum type spaces of analytic functions. Collect. Math. 69(2), 263–281 (2018) | es_ES |
dc.description.references | Albanese, A.A., Bonet, J., Ricker, W.J.: Operators on the Fréchet sequence spaces $$ces(p+), 1\le p\le \infty $$. Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Mat. RACSAM 113(2), 1533–1556 (2019) | es_ES |
dc.description.references | Albanese, A.A., Bonet, J., Ricker, W.J.: Linear operators on the (LB)-sequence spaces $$ces(p-), 1\le p\le \infty $$. Descriptive topology and functional analysis. II, 43–67, Springer Proc. Math. Stat., 286, Springer, Cham (2019) | es_ES |
dc.description.references | Arendt, W., Chalendar, I., Kumar, M., Srivastava, S.: Powers of composition operators: asymptotic behaviour on Bergman, Dirichlet and Bloch spaces. J. Austral. Math. Soc. 1–32. https://doi.org/10.1017/S1446788719000235 | es_ES |
dc.description.references | Aron, R., Lindström, M.: Spectra of weighted composition operators on weighted Banach spaces of analytic funcions. Israel J. Math. 141, 263–276 (2004) | es_ES |
dc.description.references | Bierstedt, K.D., Summers, W.H.: Biduals of weighted Banach spaces of analytic functions. J. Austral. Math. Soc., Ser. A, 54(1), 70–79 (1993) | es_ES |
dc.description.references | Bonet, J.: A note about the spectrum of composition operators induced by a rotation. RACSAM 114, 63 (2020). https://doi.org/10.1007/s13398-020-00788-5 | es_ES |
dc.description.references | Bonet, J., Domański, P., Lindström, M., Taskinen, J.: Composition operators between weighted Banach spaces of analytic functions. J. Austral. Math. Soc., Ser. A, 64(1), 101–118 (1998) | es_ES |
dc.description.references | Bourdon, P.S.: Essential angular derivatives and maximum growth of Königs eigenfunctions. J. Func. Anal. 160, 561–580 (1998) | es_ES |
dc.description.references | Bourdon, P.S.: Invertible weighted composition operators. Proc. Am. Math. Soc. 142(1), 289–299 (2014) | es_ES |
dc.description.references | Carleson, L., Gamelin, T.: Complex Dynamics. Springer, Berlin (1991) | es_ES |
dc.description.references | Cowen, C., MacCluer, B.: Composition Operators on Spaces of Analytic Functions. CRC Press, Boca Raton, FL (1995) | es_ES |
dc.description.references | Contreras, M., Hernández-Díaz, A.G.: Weighted composition operators in weighted Banach spacs of analytic functions. J. Austral. Math. Soc., Ser. A 69, 41–60 (2000) | es_ES |
dc.description.references | Eklund, T., Galindo, P., Lindström, M.: Königs eigenfunction for composition operators on Bloch and $$H^\infty $$ spaces. J. Math. Anal. Appl. 445, 1300–1309 (2017) | es_ES |
dc.description.references | Hedenmalm, H., Korenblum, B., Zhu, K.: Theory of Bergman Spaces. Grad. Texts in Math. 199. Springer, New York (2000) | es_ES |
dc.description.references | Jarchow, H.: Locally Convex Spaces. Teubner, Stuttgart (1981) | es_ES |
dc.description.references | Kamowitz, H.: Compact operators of the form $$uC_{\varphi }$$. Pac. J. Math. 80(1) (1979) | es_ES |
dc.description.references | Korenblum, B.: An extension of the Nevanlinna theory. Acta Math. 135, 187–219 (1975) | es_ES |
dc.description.references | Köthe, G.: Topological Vector Spaces II. Springer, New York Inc (1979) | es_ES |
dc.description.references | Lusky, W.: On the isomorphism classes of weighted spaces of harmonic and holomophic functions. Stud. Math. 75, 19–45 (2006) | es_ES |
dc.description.references | Meise, R., Vogt, D.: Introduction to functional analysis. Oxford Grad. Texts in Math. 2, New York, (1997) | es_ES |
dc.description.references | Montes-Rodríguez, A.: Weighted composition operators on weighted Banach spaces of analytic functions. J. Lond. Math. Soc. 61(3), 872–884 (2000) | es_ES |
dc.description.references | Queffélec, H., Queffélec, M.: Diophantine Approximation and Dirichlet series. Hindustain Book Agency, New Delhi (2013) | es_ES |
dc.description.references | Shapiro, J.H.: Composition Operators and Classical Function Theory. Springer, New York (1993) | es_ES |
dc.description.references | Shields, A.L., Williams, D.L.: Bounded projections, duality and multipliers in spaces of analytic functions. Trans. Amer. Math. Soc. 162, 287–302 (1971) | es_ES |
dc.description.references | Zhu, K.: Operator Theory on Function Spaces, Math. Surveys and Monographs, Amer. Math. Soc. 138 (2007) | es_ES |