- -

Weighted composition operators on Korenblum type spaces of analytic functions

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Weighted composition operators on Korenblum type spaces of analytic functions

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Gomez-Orts, Esther es_ES
dc.date.accessioned 2021-11-05T12:51:50Z
dc.date.available 2021-11-05T12:51:50Z
dc.date.issued 2020-09-05 es_ES
dc.identifier.issn 1578-7303 es_ES
dc.identifier.uri http://hdl.handle.net/10251/176141
dc.description.abstract [EN] We investigate the continuity, compactness and invertibility of weighted composition operators W-psi,W-phi: f -> psi(f circle phi) when they act on the classical Korenblum space A(-infinity) and other related Frechet or (LB)-spaces of analytic functions on the open unit disc which are defined as intersections or unions of weighted Banach spaces with sup-norms. Some results about the spectrum of these operators are presented in case the self-map phi has a fixed point in the unit disc. A precise description of the spectrum is obtained in this case when the operator acts on the Korenblum space. es_ES
dc.description.sponsorship This research was partially supported by the research project MTM2016-76647-P and the grant BES-2017-081200. es_ES
dc.language Inglés es_ES
dc.publisher Springer-Verlag es_ES
dc.relation.ispartof Revista de la Real Academia de Ciencias Exactas Físicas y Naturales Serie A Matemáticas es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Weighted composition operator es_ES
dc.subject Compact operator es_ES
dc.subject Spectrum es_ES
dc.subject Analytic functions es_ES
dc.subject Growth Banach spaces es_ES
dc.subject Korenblum space es_ES
dc.subject Frechet spaces es_ES
dc.subject (LB)-spaces es_ES
dc.subject.classification MATEMATICA APLICADA es_ES
dc.title Weighted composition operators on Korenblum type spaces of analytic functions es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1007/s13398-020-00924-1 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/AGENCIA ESTATAL DE INVESTIGACION//MTM2016-76647-P//ANALISIS FUNCIONAL, TEORIA DE OPERADORES Y ANALISIS TIEMPO-FRECUENCIA/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/AEI//BES-2017-081200//AYUDAS PARA CONTRATOS PREDOCTORALES PARA LA FORMACION DE DOCTORES-GOMEZ ORTS. PROYECTO: ANALISIS FUNCIONAL, TEORIA DE OPERADORES Y ANALISIS TIEMPO-FRECUENCIA/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto Universitario de Matemática Pura y Aplicada - Institut Universitari de Matemàtica Pura i Aplicada es_ES
dc.description.bibliographicCitation Gomez-Orts, E. (2020). Weighted composition operators on Korenblum type spaces of analytic functions. Revista de la Real Academia de Ciencias Exactas Físicas y Naturales Serie A Matemáticas. 114(4):1-15. https://doi.org/10.1007/s13398-020-00924-1 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1007/s13398-020-00924-1 es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 15 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 114 es_ES
dc.description.issue 4 es_ES
dc.relation.pasarela S\423513 es_ES
dc.contributor.funder AGENCIA ESTATAL DE INVESTIGACION es_ES
dc.description.references Abramovich, Y.A., Aliprantis, C.D.: An invitation to operator theory. Graduate Studies in Mathematics. Amer. Math. Soc., 50 (2002) es_ES
dc.description.references Albanese, A.A., Bonet, J., Ricker, W.J.: The Cesàro operator in the Fréchet spaces $$\ell ^{p+}$$ and $$L^{p-}$$. Glasgow Math. J. 59, 273–287 (2017) es_ES
dc.description.references Albanese, A.A., Bonet, J., Ricker, W.J.: The Cesàro operator on Korenblum type spaces of analytic functions. Collect. Math. 69(2), 263–281 (2018) es_ES
dc.description.references Albanese, A.A., Bonet, J., Ricker, W.J.: Operators on the Fréchet sequence spaces $$ces(p+), 1\le p\le \infty $$. Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Mat. RACSAM 113(2), 1533–1556 (2019) es_ES
dc.description.references Albanese, A.A., Bonet, J., Ricker, W.J.: Linear operators on the (LB)-sequence spaces $$ces(p-), 1\le p\le \infty $$. Descriptive topology and functional analysis. II, 43–67, Springer Proc. Math. Stat., 286, Springer, Cham (2019) es_ES
dc.description.references Arendt, W., Chalendar, I., Kumar, M., Srivastava, S.: Powers of composition operators: asymptotic behaviour on Bergman, Dirichlet and Bloch spaces. J. Austral. Math. Soc. 1–32. https://doi.org/10.1017/S1446788719000235 es_ES
dc.description.references Aron, R., Lindström, M.: Spectra of weighted composition operators on weighted Banach spaces of analytic funcions. Israel J. Math. 141, 263–276 (2004) es_ES
dc.description.references Bierstedt, K.D., Summers, W.H.: Biduals of weighted Banach spaces of analytic functions. J. Austral. Math. Soc., Ser. A, 54(1), 70–79 (1993) es_ES
dc.description.references Bonet, J.: A note about the spectrum of composition operators induced by a rotation. RACSAM 114, 63 (2020). https://doi.org/10.1007/s13398-020-00788-5 es_ES
dc.description.references Bonet, J., Domański, P., Lindström, M., Taskinen, J.: Composition operators between weighted Banach spaces of analytic functions. J. Austral. Math. Soc., Ser. A, 64(1), 101–118 (1998) es_ES
dc.description.references Bourdon, P.S.: Essential angular derivatives and maximum growth of Königs eigenfunctions. J. Func. Anal. 160, 561–580 (1998) es_ES
dc.description.references Bourdon, P.S.: Invertible weighted composition operators. Proc. Am. Math. Soc. 142(1), 289–299 (2014) es_ES
dc.description.references Carleson, L., Gamelin, T.: Complex Dynamics. Springer, Berlin (1991) es_ES
dc.description.references Cowen, C., MacCluer, B.: Composition Operators on Spaces of Analytic Functions. CRC Press, Boca Raton, FL (1995) es_ES
dc.description.references Contreras, M., Hernández-Díaz, A.G.: Weighted composition operators in weighted Banach spacs of analytic functions. J. Austral. Math. Soc., Ser. A 69, 41–60 (2000) es_ES
dc.description.references Eklund, T., Galindo, P., Lindström, M.: Königs eigenfunction for composition operators on Bloch and $$H^\infty $$ spaces. J. Math. Anal. Appl. 445, 1300–1309 (2017) es_ES
dc.description.references Hedenmalm, H., Korenblum, B., Zhu, K.: Theory of Bergman Spaces. Grad. Texts in Math. 199. Springer, New York (2000) es_ES
dc.description.references Jarchow, H.: Locally Convex Spaces. Teubner, Stuttgart (1981) es_ES
dc.description.references Kamowitz, H.: Compact operators of the form $$uC_{\varphi }$$. Pac. J. Math. 80(1) (1979) es_ES
dc.description.references Korenblum, B.: An extension of the Nevanlinna theory. Acta Math. 135, 187–219 (1975) es_ES
dc.description.references Köthe, G.: Topological Vector Spaces II. Springer, New York Inc (1979) es_ES
dc.description.references Lusky, W.: On the isomorphism classes of weighted spaces of harmonic and holomophic functions. Stud. Math. 75, 19–45 (2006) es_ES
dc.description.references Meise, R., Vogt, D.: Introduction to functional analysis. Oxford Grad. Texts in Math. 2, New York, (1997) es_ES
dc.description.references Montes-Rodríguez, A.: Weighted composition operators on weighted Banach spaces of analytic functions. J. Lond. Math. Soc. 61(3), 872–884 (2000) es_ES
dc.description.references Queffélec, H., Queffélec, M.: Diophantine Approximation and Dirichlet series. Hindustain Book Agency, New Delhi (2013) es_ES
dc.description.references Shapiro, J.H.: Composition Operators and Classical Function Theory. Springer, New York (1993) es_ES
dc.description.references Shields, A.L., Williams, D.L.: Bounded projections, duality and multipliers in spaces of analytic functions. Trans. Amer. Math. Soc. 162, 287–302 (1971) es_ES
dc.description.references Zhu, K.: Operator Theory on Function Spaces, Math. Surveys and Monographs, Amer. Math. Soc. 138 (2007) es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem