- -

Weighted composition operators on Korenblum type spaces of analytic functions

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Weighted composition operators on Korenblum type spaces of analytic functions

Mostrar el registro completo del ítem

Gomez-Orts, E. (2020). Weighted composition operators on Korenblum type spaces of analytic functions. Revista de la Real Academia de Ciencias Exactas Físicas y Naturales Serie A Matemáticas. 114(4):1-15. https://doi.org/10.1007/s13398-020-00924-1

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/176141

Ficheros en el ítem

Metadatos del ítem

Título: Weighted composition operators on Korenblum type spaces of analytic functions
Autor: Gomez-Orts, Esther
Entidad UPV: Universitat Politècnica de València. Instituto Universitario de Matemática Pura y Aplicada - Institut Universitari de Matemàtica Pura i Aplicada
Fecha difusión:
Resumen:
[EN] We investigate the continuity, compactness and invertibility of weighted composition operators W-psi,W-phi: f -> psi(f circle phi) when they act on the classical Korenblum space A(-infinity) and other related Frechet ...[+]
Palabras clave: Weighted composition operator , Compact operator , Spectrum , Analytic functions , Growth Banach spaces , Korenblum space , Frechet spaces , (LB)-spaces
Derechos de uso: Reserva de todos los derechos
Fuente:
Revista de la Real Academia de Ciencias Exactas Físicas y Naturales Serie A Matemáticas. (issn: 1578-7303 )
DOI: 10.1007/s13398-020-00924-1
Editorial:
Springer-Verlag
Versión del editor: https://doi.org/10.1007/s13398-020-00924-1
Código del Proyecto:
info:eu-repo/grantAgreement/AGENCIA ESTATAL DE INVESTIGACION//MTM2016-76647-P//ANALISIS FUNCIONAL, TEORIA DE OPERADORES Y ANALISIS TIEMPO-FRECUENCIA/
info:eu-repo/grantAgreement/AEI//BES-2017-081200//AYUDAS PARA CONTRATOS PREDOCTORALES PARA LA FORMACION DE DOCTORES-GOMEZ ORTS. PROYECTO: ANALISIS FUNCIONAL, TEORIA DE OPERADORES Y ANALISIS TIEMPO-FRECUENCIA/
Agradecimientos:
This research was partially supported by the research project MTM2016-76647-P and the grant BES-2017-081200.
Tipo: Artículo

References

Abramovich, Y.A., Aliprantis, C.D.: An invitation to operator theory. Graduate Studies in Mathematics. Amer. Math. Soc., 50 (2002)

Albanese, A.A., Bonet, J., Ricker, W.J.: The Cesàro operator in the Fréchet spaces $$\ell ^{p+}$$ and $$L^{p-}$$. Glasgow Math. J. 59, 273–287 (2017)

Albanese, A.A., Bonet, J., Ricker, W.J.: The Cesàro operator on Korenblum type spaces of analytic functions. Collect. Math. 69(2), 263–281 (2018) [+]
Abramovich, Y.A., Aliprantis, C.D.: An invitation to operator theory. Graduate Studies in Mathematics. Amer. Math. Soc., 50 (2002)

Albanese, A.A., Bonet, J., Ricker, W.J.: The Cesàro operator in the Fréchet spaces $$\ell ^{p+}$$ and $$L^{p-}$$. Glasgow Math. J. 59, 273–287 (2017)

Albanese, A.A., Bonet, J., Ricker, W.J.: The Cesàro operator on Korenblum type spaces of analytic functions. Collect. Math. 69(2), 263–281 (2018)

Albanese, A.A., Bonet, J., Ricker, W.J.: Operators on the Fréchet sequence spaces $$ces(p+), 1\le p\le \infty $$. Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Mat. RACSAM 113(2), 1533–1556 (2019)

Albanese, A.A., Bonet, J., Ricker, W.J.: Linear operators on the (LB)-sequence spaces $$ces(p-), 1\le p\le \infty $$. Descriptive topology and functional analysis. II, 43–67, Springer Proc. Math. Stat., 286, Springer, Cham (2019)

Arendt, W., Chalendar, I., Kumar, M., Srivastava, S.: Powers of composition operators: asymptotic behaviour on Bergman, Dirichlet and Bloch spaces. J. Austral. Math. Soc. 1–32. https://doi.org/10.1017/S1446788719000235

Aron, R., Lindström, M.: Spectra of weighted composition operators on weighted Banach spaces of analytic funcions. Israel J. Math. 141, 263–276 (2004)

Bierstedt, K.D., Summers, W.H.: Biduals of weighted Banach spaces of analytic functions. J. Austral. Math. Soc., Ser. A, 54(1), 70–79 (1993)

Bonet, J.: A note about the spectrum of composition operators induced by a rotation. RACSAM 114, 63 (2020). https://doi.org/10.1007/s13398-020-00788-5

Bonet, J., Domański, P., Lindström, M., Taskinen, J.: Composition operators between weighted Banach spaces of analytic functions. J. Austral. Math. Soc., Ser. A, 64(1), 101–118 (1998)

Bourdon, P.S.: Essential angular derivatives and maximum growth of Königs eigenfunctions. J. Func. Anal. 160, 561–580 (1998)

Bourdon, P.S.: Invertible weighted composition operators. Proc. Am. Math. Soc. 142(1), 289–299 (2014)

Carleson, L., Gamelin, T.: Complex Dynamics. Springer, Berlin (1991)

Cowen, C., MacCluer, B.: Composition Operators on Spaces of Analytic Functions. CRC Press, Boca Raton, FL (1995)

Contreras, M., Hernández-Díaz, A.G.: Weighted composition operators in weighted Banach spacs of analytic functions. J. Austral. Math. Soc., Ser. A 69, 41–60 (2000)

Eklund, T., Galindo, P., Lindström, M.: Königs eigenfunction for composition operators on Bloch and $$H^\infty $$ spaces. J. Math. Anal. Appl. 445, 1300–1309 (2017)

Hedenmalm, H., Korenblum, B., Zhu, K.: Theory of Bergman Spaces. Grad. Texts in Math. 199. Springer, New York (2000)

Jarchow, H.: Locally Convex Spaces. Teubner, Stuttgart (1981)

Kamowitz, H.: Compact operators of the form $$uC_{\varphi }$$. Pac. J. Math. 80(1) (1979)

Korenblum, B.: An extension of the Nevanlinna theory. Acta Math. 135, 187–219 (1975)

Köthe, G.: Topological Vector Spaces II. Springer, New York Inc (1979)

Lusky, W.: On the isomorphism classes of weighted spaces of harmonic and holomophic functions. Stud. Math. 75, 19–45 (2006)

Meise, R., Vogt, D.: Introduction to functional analysis. Oxford Grad. Texts in Math. 2, New York, (1997)

Montes-Rodríguez, A.: Weighted composition operators on weighted Banach spaces of analytic functions. J. Lond. Math. Soc. 61(3), 872–884 (2000)

Queffélec, H., Queffélec, M.: Diophantine Approximation and Dirichlet series. Hindustain Book Agency, New Delhi (2013)

Shapiro, J.H.: Composition Operators and Classical Function Theory. Springer, New York (1993)

Shields, A.L., Williams, D.L.: Bounded projections, duality and multipliers in spaces of analytic functions. Trans. Amer. Math. Soc. 162, 287–302 (1971)

Zhu, K.: Operator Theory on Function Spaces, Math. Surveys and Monographs, Amer. Math. Soc. 138 (2007)

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem