Mostrar el registro sencillo del ítem
dc.contributor.author | Galindo, Carlos | es_ES |
dc.contributor.author | Monserrat Delpalillo, Francisco José | es_ES |
dc.contributor.author | Moreno-Ávila, Carlos-Jesús | es_ES |
dc.date.accessioned | 2021-11-05T13:12:04Z | |
dc.date.available | 2021-11-05T13:12:04Z | |
dc.date.issued | 2020-05 | es_ES |
dc.identifier.issn | 1139-1138 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/176198 | |
dc.description.abstract | [EN] We consider rational surfaces Z defined by divisorial valuations ¿ of Hirzebruch surfaces. We introduce concepts of non-positivity and negativity at infinity for these valuations and prove that these concepts admit nice local and global equivalent conditions. In particular we prove that, when ¿ is non-positive at infinity, the extremal rays of the cone of curves of Z can be explicitly given | es_ES |
dc.description.sponsorship | Partially supported by the Spanish Government Ministerio de Economia, Industria y Competitividad (MINECO), Grants MTM2015-65764-C3-2-P, MTM2016-81735-REDT, PGC2018-096446-B-C22 and BES-2016-076314, as well as by Universitat Jaume I, Grant UJI-B2018-10. | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | Springer-Verlag | es_ES |
dc.relation.ispartof | Revista Matemática Complutense | es_ES |
dc.rights | Reserva de todos los derechos | es_ES |
dc.subject | Non-positive at infinity valuations | es_ES |
dc.subject | Rational surfaces | es_ES |
dc.subject | Cone of curves | es_ES |
dc.subject.classification | MATEMATICA APLICADA | es_ES |
dc.title | Non-positive and negative at infinity divisorial valuations of Hirzebruch surfaces | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1007/s13163-019-00319-w | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/PGC2018-096446-B-C22/ES/VALORACIONES, FOLIACIONES Y CODIGOS CORRECTORES DE ERRORES CUANTICOS/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MINECO//BES-2016-076314/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MINECO//MTM2015-65764-C3-2-P/ES/VALORACIONES, CAMPOS VECTORIALES ALGEBRAICOS Y CODIGOS CORRECTORES/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MINECO//MTM2016-81735-REDT/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/UJI//UJI-B2018-10/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/GENERALITAT VALENCIANA//AICO%2F2019%2F223//CONJUNTOS CONVEXOS ASOCIADOS A SUPERFICIES Y CODIGOS CORRECTORES DE ERRORES/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Matemática Aplicada - Departament de Matemàtica Aplicada | es_ES |
dc.description.bibliographicCitation | Galindo, C.; Monserrat Delpalillo, FJ.; Moreno-Ávila, C. (2020). Non-positive and negative at infinity divisorial valuations of Hirzebruch surfaces. Revista Matemática Complutense. 33(2):349-372. https://doi.org/10.1007/s13163-019-00319-w | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.1007/s13163-019-00319-w | es_ES |
dc.description.upvformatpinicio | 349 | es_ES |
dc.description.upvformatpfin | 372 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 33 | es_ES |
dc.description.issue | 2 | es_ES |
dc.relation.pasarela | S\430286 | es_ES |
dc.contributor.funder | Universitat Jaume I | es_ES |
dc.contributor.funder | GENERALITAT VALENCIANA | es_ES |
dc.contributor.funder | Ministerio de Economía y Competitividad | es_ES |
dc.contributor.funder | Ministerio de Ciencia, Innovación y Universidades | es_ES |
dc.contributor.funder | Ministerio de Economía, Industria y Competitividad | es_ES |
dc.description.references | Abhyankar, S.S., Moh, T.T.: Newton-Puiseux expansion and generalized Tschirnhausen transformation. I, II. J. Reine Angew. Math. 260, 47–83 (1973). ibid. 261 (1973), 29–54 | es_ES |
dc.description.references | Beauville, A.: Complex Algebraic Surfaces. London Mathematical Society Student Texts, vol. 34, 2nd edn. Cambridge University Press, Cambridge (1996) | es_ES |
dc.description.references | Campillo, A.: Algebroid Curves in Positive Characteristic. Lecture Notes in Mathematics, vol. 613. Springer, Berlin (1980) | es_ES |
dc.description.references | Campillo, A., Piltant, O., Reguera, A.: Curves and divisors on surfaces associated to plane curves with one place at infinity. Proc. Lond. Math. Soc. 84, 559–580 (2002) | es_ES |
dc.description.references | Casas-Alvero, E.: Singularities of Plane Curves. London Mathematical Society Lecture Note Series, vol. 276. Cambridge University Press, Cambridge (2000) | es_ES |
dc.description.references | Ciliberto, C., Farnik, M., Küronya, A., Lozovanu, V., Roé, J., Shramov, C.: Newton–Okounkov bodies sprouting on the valuative tree. Rend. Circ. Mat. Palermo 2(66), 161–194 (2017) | es_ES |
dc.description.references | Cutkosky, S.D., Ein, L., Lazarsfeld, R.: Positivity and complexity of ideal sheaves. Math. Ann. 321(2), 213–234 (2001) | es_ES |
dc.description.references | de la Rosa-Navarro, B.L., Frías-Medina, J.B., Lahyane, M.: Rational surfaces with finitely generated Cox rings and very high Picard numbers. RACSAM 111, 297–306 (2017) | es_ES |
dc.description.references | Delgado, F., Galindo, C., Núñez, A.: Saturation for valuations on two-dimensional regular local rings. Math. Z. 234, 519–550 (2000) | es_ES |
dc.description.references | Demailly, J.P.: Singular Hermitian metrics on positive line bundles. Complex Algebraic Varieties (Bayreuth, 1990). Lecture Notes in Mathematics, vol. 1507, pp. 87–104. Springer, Berlin (1992) | es_ES |
dc.description.references | Dumnicki, M., Harbourne, B., Küronya, A., Roé, J., Szemberg, T.: Very general monomial valuations of $$\mathbb{P}^2$$ and a Nagata type conjecture. Commun. Anal. Geom. 25, 125–161 (2017) | es_ES |
dc.description.references | Favre, C., Jonsson, M.: The Valuative Tree. Lecture Notes in Mathematics, vol. 1853. Springer, Berlin (2004) | es_ES |
dc.description.references | Favre, C., Jonsson, M.: Eigenvaluations. Ann. Sci. Éc. Norm. Sup. 40, 309–349 (2007) | es_ES |
dc.description.references | Favre, C., Jonsson, M.: Dynamical compactifications of $$\mathbb{C}^2$$. Ann. Math. 173, 211–248 (2011) | es_ES |
dc.description.references | Fulton, W.: Introduction to Toric Varieties. Annals of Mathematics Studies, vol. 131. Princeton University Press, Princeton (1993) | es_ES |
dc.description.references | Galindo, C., Monserrat, F.: The cone of curves and the Cox ring of rational surfaces given by divisorial valuations. Adv. Math. 290, 1040–1061 (2016) | es_ES |
dc.description.references | Galindo, C., Monserrat, F., Moyano-Fernández, J.: Minimal plane valuations. J. Algebraic Geom. 27, 751–783 (2018) | es_ES |
dc.description.references | Galindo, C., Monserrat, F., Moyano-Fernández, J., Nickel, M.: Newton-Okounkov bodies of exceptional curve valuations. arXiv:1705.03948 (2017) | es_ES |
dc.description.references | Greco, S., Kiyek, K.: General elements of complete ideals and valuations centered at a two-dimensional regular local ring. In: Christensen, C., Sathaye, A., Sundaram, G., Bajaj, C. (eds.) Algebra, Arithmetic and Geometry with Applications (West Lafayette, IN, 2000), pp. 381–455. Springer, Berlin (2004) | es_ES |
dc.description.references | Hartshorne, R.: Algebraic Geometry. Graduate Texts in Mathematics, vol. 52. Springer, New York (1977) | es_ES |
dc.description.references | Iitaka, S.: On $$D$$-dimensions of algebraic varieties. J. Math. Soc. Jpn. 23, 356–373 (1971) | es_ES |
dc.description.references | Jonsson, M.: Dynamics on Berkovich Spaces in Low Dimensions. Springer, Berlin (2015) | es_ES |
dc.description.references | Kaveh, K., Khovanskii, A.: Newton–Okounkov bodies, semigroups of integral points, graded algebras and intersection theory. Ann. Math. 176, 925–978 (2012) | es_ES |
dc.description.references | Kollar, J., Mori, S.: Birational Geometry of Algebraic Varieties. Cambridge Tracts in Mathematics, vol. 134. Cambridge University Press, Cambridge (1998) | es_ES |
dc.description.references | Moe, T.K.: Cuspidal curves on Hirzebruch surfaces. PhD thesis, Department of Mathematics, University of Oslo. https://www.duo.uio.no/handle/10852/37197 (2013). Accessed 23 Nov 2018 | es_ES |
dc.description.references | Mondal, P.: How to determine the sign of a valuation on $$\mathbb{C}[x, y]$$. Mich. Math. J. 66, 227–244 (2017) | es_ES |
dc.description.references | Okounkov, A.: Why would multiplicities be log-concave? In: Duval, C., Ovsienko, V., Guieu, L. (eds.) The Orbit Method in Geometry and Physics (Marseille, 2000). Progress in Mathematics, vol. 213. Birkhäuser, Boston (2003) | es_ES |
dc.description.references | Reid, M.: Chapters on algebraic surfaces. In: Kollár, J. (ed.) Complex Algebraic Geometry (Park city, UT, 1993). IAS/Park City Lecture Notes Series, vol. 3, pp. 3–159. American Mathematical Society, Providence (1997) | es_ES |
dc.description.references | Spivakovsky, M.: Valuations in function fields of surfaces. Am. J. Math. 112, 107–156 (1990) | es_ES |
dc.description.references | Teissier, B.: Valuations, deformations, and toric geometry. In: Kuhlmann, F.-Z., Kuhlmann, S., Marshall, M. (eds.) Valuation Theory and Its Applications, II (Saskatoon, SK, 1999). Fields Institute Communications, vol. 333. American Mathematical Society, Providence (1999) | es_ES |
dc.description.references | Zariski, O., Samuel, P.: Commutative Algebra II. Vol. II. Graduate Texts in Mathematics, vol. 29. Springer, Berlin (1975) | es_ES |