- -

Non-positive and negative at infinity divisorial valuations of Hirzebruch surfaces

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Non-positive and negative at infinity divisorial valuations of Hirzebruch surfaces

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Galindo, Carlos es_ES
dc.contributor.author Monserrat Delpalillo, Francisco José es_ES
dc.contributor.author Moreno-Ávila, Carlos-Jesús es_ES
dc.date.accessioned 2021-11-05T13:12:04Z
dc.date.available 2021-11-05T13:12:04Z
dc.date.issued 2020-05 es_ES
dc.identifier.issn 1139-1138 es_ES
dc.identifier.uri http://hdl.handle.net/10251/176198
dc.description.abstract [EN] We consider rational surfaces Z defined by divisorial valuations ¿ of Hirzebruch surfaces. We introduce concepts of non-positivity and negativity at infinity for these valuations and prove that these concepts admit nice local and global equivalent conditions. In particular we prove that, when ¿ is non-positive at infinity, the extremal rays of the cone of curves of Z can be explicitly given es_ES
dc.description.sponsorship Partially supported by the Spanish Government Ministerio de Economia, Industria y Competitividad (MINECO), Grants MTM2015-65764-C3-2-P, MTM2016-81735-REDT, PGC2018-096446-B-C22 and BES-2016-076314, as well as by Universitat Jaume I, Grant UJI-B2018-10. es_ES
dc.language Inglés es_ES
dc.publisher Springer-Verlag es_ES
dc.relation.ispartof Revista Matemática Complutense es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Non-positive at infinity valuations es_ES
dc.subject Rational surfaces es_ES
dc.subject Cone of curves es_ES
dc.subject.classification MATEMATICA APLICADA es_ES
dc.title Non-positive and negative at infinity divisorial valuations of Hirzebruch surfaces es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1007/s13163-019-00319-w es_ES
dc.relation.projectID info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/PGC2018-096446-B-C22/ES/VALORACIONES, FOLIACIONES Y CODIGOS CORRECTORES DE ERRORES CUANTICOS/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//BES-2016-076314/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//MTM2015-65764-C3-2-P/ES/VALORACIONES, CAMPOS VECTORIALES ALGEBRAICOS Y CODIGOS CORRECTORES/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//MTM2016-81735-REDT/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/UJI//UJI-B2018-10/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/GENERALITAT VALENCIANA//AICO%2F2019%2F223//CONJUNTOS CONVEXOS ASOCIADOS A SUPERFICIES Y CODIGOS CORRECTORES DE ERRORES/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Matemática Aplicada - Departament de Matemàtica Aplicada es_ES
dc.description.bibliographicCitation Galindo, C.; Monserrat Delpalillo, FJ.; Moreno-Ávila, C. (2020). Non-positive and negative at infinity divisorial valuations of Hirzebruch surfaces. Revista Matemática Complutense. 33(2):349-372. https://doi.org/10.1007/s13163-019-00319-w es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1007/s13163-019-00319-w es_ES
dc.description.upvformatpinicio 349 es_ES
dc.description.upvformatpfin 372 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 33 es_ES
dc.description.issue 2 es_ES
dc.relation.pasarela S\430286 es_ES
dc.contributor.funder Universitat Jaume I es_ES
dc.contributor.funder GENERALITAT VALENCIANA es_ES
dc.contributor.funder Ministerio de Economía y Competitividad es_ES
dc.contributor.funder Ministerio de Ciencia, Innovación y Universidades es_ES
dc.contributor.funder Ministerio de Economía, Industria y Competitividad es_ES
dc.description.references Abhyankar, S.S., Moh, T.T.: Newton-Puiseux expansion and generalized Tschirnhausen transformation. I, II. J. Reine Angew. Math. 260, 47–83 (1973). ibid. 261 (1973), 29–54 es_ES
dc.description.references Beauville, A.: Complex Algebraic Surfaces. London Mathematical Society Student Texts, vol. 34, 2nd edn. Cambridge University Press, Cambridge (1996) es_ES
dc.description.references Campillo, A.: Algebroid Curves in Positive Characteristic. Lecture Notes in Mathematics, vol. 613. Springer, Berlin (1980) es_ES
dc.description.references Campillo, A., Piltant, O., Reguera, A.: Curves and divisors on surfaces associated to plane curves with one place at infinity. Proc. Lond. Math. Soc. 84, 559–580 (2002) es_ES
dc.description.references Casas-Alvero, E.: Singularities of Plane Curves. London Mathematical Society Lecture Note Series, vol. 276. Cambridge University Press, Cambridge (2000) es_ES
dc.description.references Ciliberto, C., Farnik, M., Küronya, A., Lozovanu, V., Roé, J., Shramov, C.: Newton–Okounkov bodies sprouting on the valuative tree. Rend. Circ. Mat. Palermo 2(66), 161–194 (2017) es_ES
dc.description.references Cutkosky, S.D., Ein, L., Lazarsfeld, R.: Positivity and complexity of ideal sheaves. Math. Ann. 321(2), 213–234 (2001) es_ES
dc.description.references de la Rosa-Navarro, B.L., Frías-Medina, J.B., Lahyane, M.: Rational surfaces with finitely generated Cox rings and very high Picard numbers. RACSAM 111, 297–306 (2017) es_ES
dc.description.references Delgado, F., Galindo, C., Núñez, A.: Saturation for valuations on two-dimensional regular local rings. Math. Z. 234, 519–550 (2000) es_ES
dc.description.references Demailly, J.P.: Singular Hermitian metrics on positive line bundles. Complex Algebraic Varieties (Bayreuth, 1990). Lecture Notes in Mathematics, vol. 1507, pp. 87–104. Springer, Berlin (1992) es_ES
dc.description.references Dumnicki, M., Harbourne, B., Küronya, A., Roé, J., Szemberg, T.: Very general monomial valuations of $$\mathbb{P}^2$$ and a Nagata type conjecture. Commun. Anal. Geom. 25, 125–161 (2017) es_ES
dc.description.references Favre, C., Jonsson, M.: The Valuative Tree. Lecture Notes in Mathematics, vol. 1853. Springer, Berlin (2004) es_ES
dc.description.references Favre, C., Jonsson, M.: Eigenvaluations. Ann. Sci. Éc. Norm. Sup. 40, 309–349 (2007) es_ES
dc.description.references Favre, C., Jonsson, M.: Dynamical compactifications of $$\mathbb{C}^2$$. Ann. Math. 173, 211–248 (2011) es_ES
dc.description.references Fulton, W.: Introduction to Toric Varieties. Annals of Mathematics Studies, vol. 131. Princeton University Press, Princeton (1993) es_ES
dc.description.references Galindo, C., Monserrat, F.: The cone of curves and the Cox ring of rational surfaces given by divisorial valuations. Adv. Math. 290, 1040–1061 (2016) es_ES
dc.description.references Galindo, C., Monserrat, F., Moyano-Fernández, J.: Minimal plane valuations. J. Algebraic Geom. 27, 751–783 (2018) es_ES
dc.description.references Galindo, C., Monserrat, F., Moyano-Fernández, J., Nickel, M.: Newton-Okounkov bodies of exceptional curve valuations. arXiv:1705.03948 (2017) es_ES
dc.description.references Greco, S., Kiyek, K.: General elements of complete ideals and valuations centered at a two-dimensional regular local ring. In: Christensen, C., Sathaye, A., Sundaram, G., Bajaj, C. (eds.) Algebra, Arithmetic and Geometry with Applications (West Lafayette, IN, 2000), pp. 381–455. Springer, Berlin (2004) es_ES
dc.description.references Hartshorne, R.: Algebraic Geometry. Graduate Texts in Mathematics, vol. 52. Springer, New York (1977) es_ES
dc.description.references Iitaka, S.: On $$D$$-dimensions of algebraic varieties. J. Math. Soc. Jpn. 23, 356–373 (1971) es_ES
dc.description.references Jonsson, M.: Dynamics on Berkovich Spaces in Low Dimensions. Springer, Berlin (2015) es_ES
dc.description.references Kaveh, K., Khovanskii, A.: Newton–Okounkov bodies, semigroups of integral points, graded algebras and intersection theory. Ann. Math. 176, 925–978 (2012) es_ES
dc.description.references Kollar, J., Mori, S.: Birational Geometry of Algebraic Varieties. Cambridge Tracts in Mathematics, vol. 134. Cambridge University Press, Cambridge (1998) es_ES
dc.description.references Moe, T.K.: Cuspidal curves on Hirzebruch surfaces. PhD thesis, Department of Mathematics, University of Oslo. https://www.duo.uio.no/handle/10852/37197 (2013). Accessed 23 Nov 2018 es_ES
dc.description.references Mondal, P.: How to determine the sign of a valuation on $$\mathbb{C}[x, y]$$. Mich. Math. J. 66, 227–244 (2017) es_ES
dc.description.references Okounkov, A.: Why would multiplicities be log-concave? In: Duval, C., Ovsienko, V., Guieu, L. (eds.) The Orbit Method in Geometry and Physics (Marseille, 2000). Progress in Mathematics, vol. 213. Birkhäuser, Boston (2003) es_ES
dc.description.references Reid, M.: Chapters on algebraic surfaces. In: Kollár, J. (ed.) Complex Algebraic Geometry (Park city, UT, 1993). IAS/Park City Lecture Notes Series, vol. 3, pp. 3–159. American Mathematical Society, Providence (1997) es_ES
dc.description.references Spivakovsky, M.: Valuations in function fields of surfaces. Am. J. Math. 112, 107–156 (1990) es_ES
dc.description.references Teissier, B.: Valuations, deformations, and toric geometry. In: Kuhlmann, F.-Z., Kuhlmann, S., Marshall, M. (eds.) Valuation Theory and Its Applications, II (Saskatoon, SK, 1999). Fields Institute Communications, vol. 333. American Mathematical Society, Providence (1999) es_ES
dc.description.references Zariski, O., Samuel, P.: Commutative Algebra II. Vol. II. Graduate Texts in Mathematics, vol. 29. Springer, Berlin (1975) es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem