- -

Non-positive and negative at infinity divisorial valuations of Hirzebruch surfaces

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Non-positive and negative at infinity divisorial valuations of Hirzebruch surfaces

Mostrar el registro completo del ítem

Galindo, C.; Monserrat Delpalillo, FJ.; Moreno-Ávila, C. (2020). Non-positive and negative at infinity divisorial valuations of Hirzebruch surfaces. Revista Matemática Complutense. 33(2):349-372. https://doi.org/10.1007/s13163-019-00319-w

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/176198

Ficheros en el ítem

Metadatos del ítem

Título: Non-positive and negative at infinity divisorial valuations of Hirzebruch surfaces
Autor: Galindo, Carlos Monserrat Delpalillo, Francisco José Moreno-Ávila, Carlos-Jesús
Entidad UPV: Universitat Politècnica de València. Departamento de Matemática Aplicada - Departament de Matemàtica Aplicada
Fecha difusión:
Resumen:
[EN] We consider rational surfaces Z defined by divisorial valuations ¿ of Hirzebruch surfaces. We introduce concepts of non-positivity and negativity at infinity for these valuations and prove that these concepts admit ...[+]
Palabras clave: Non-positive at infinity valuations , Rational surfaces , Cone of curves
Derechos de uso: Reserva de todos los derechos
Fuente:
Revista Matemática Complutense. (issn: 1139-1138 )
DOI: 10.1007/s13163-019-00319-w
Editorial:
Springer-Verlag
Versión del editor: https://doi.org/10.1007/s13163-019-00319-w
Código del Proyecto:
info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/PGC2018-096446-B-C22/ES/VALORACIONES, FOLIACIONES Y CODIGOS CORRECTORES DE ERRORES CUANTICOS/
...[+]
info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/PGC2018-096446-B-C22/ES/VALORACIONES, FOLIACIONES Y CODIGOS CORRECTORES DE ERRORES CUANTICOS/
info:eu-repo/grantAgreement/MINECO//BES-2016-076314/
info:eu-repo/grantAgreement/MINECO//MTM2015-65764-C3-2-P/ES/VALORACIONES, CAMPOS VECTORIALES ALGEBRAICOS Y CODIGOS CORRECTORES/
info:eu-repo/grantAgreement/MINECO//MTM2016-81735-REDT/
info:eu-repo/grantAgreement/UJI//UJI-B2018-10/
info:eu-repo/grantAgreement/GENERALITAT VALENCIANA//AICO%2F2019%2F223//CONJUNTOS CONVEXOS ASOCIADOS A SUPERFICIES Y CODIGOS CORRECTORES DE ERRORES/
[-]
Agradecimientos:
Partially supported by the Spanish Government Ministerio de Economia, Industria y Competitividad (MINECO), Grants MTM2015-65764-C3-2-P, MTM2016-81735-REDT, PGC2018-096446-B-C22 and BES-2016-076314, as well as by Universitat ...[+]
Tipo: Artículo

References

Abhyankar, S.S., Moh, T.T.: Newton-Puiseux expansion and generalized Tschirnhausen transformation. I, II. J. Reine Angew. Math. 260, 47–83 (1973). ibid. 261 (1973), 29–54

Beauville, A.: Complex Algebraic Surfaces. London Mathematical Society Student Texts, vol. 34, 2nd edn. Cambridge University Press, Cambridge (1996)

Campillo, A.: Algebroid Curves in Positive Characteristic. Lecture Notes in Mathematics, vol. 613. Springer, Berlin (1980) [+]
Abhyankar, S.S., Moh, T.T.: Newton-Puiseux expansion and generalized Tschirnhausen transformation. I, II. J. Reine Angew. Math. 260, 47–83 (1973). ibid. 261 (1973), 29–54

Beauville, A.: Complex Algebraic Surfaces. London Mathematical Society Student Texts, vol. 34, 2nd edn. Cambridge University Press, Cambridge (1996)

Campillo, A.: Algebroid Curves in Positive Characteristic. Lecture Notes in Mathematics, vol. 613. Springer, Berlin (1980)

Campillo, A., Piltant, O., Reguera, A.: Curves and divisors on surfaces associated to plane curves with one place at infinity. Proc. Lond. Math. Soc. 84, 559–580 (2002)

Casas-Alvero, E.: Singularities of Plane Curves. London Mathematical Society Lecture Note Series, vol. 276. Cambridge University Press, Cambridge (2000)

Ciliberto, C., Farnik, M., Küronya, A., Lozovanu, V., Roé, J., Shramov, C.: Newton–Okounkov bodies sprouting on the valuative tree. Rend. Circ. Mat. Palermo 2(66), 161–194 (2017)

Cutkosky, S.D., Ein, L., Lazarsfeld, R.: Positivity and complexity of ideal sheaves. Math. Ann. 321(2), 213–234 (2001)

de la Rosa-Navarro, B.L., Frías-Medina, J.B., Lahyane, M.: Rational surfaces with finitely generated Cox rings and very high Picard numbers. RACSAM 111, 297–306 (2017)

Delgado, F., Galindo, C., Núñez, A.: Saturation for valuations on two-dimensional regular local rings. Math. Z. 234, 519–550 (2000)

Demailly, J.P.: Singular Hermitian metrics on positive line bundles. Complex Algebraic Varieties (Bayreuth, 1990). Lecture Notes in Mathematics, vol. 1507, pp. 87–104. Springer, Berlin (1992)

Dumnicki, M., Harbourne, B., Küronya, A., Roé, J., Szemberg, T.: Very general monomial valuations of $$\mathbb{P}^2$$ and a Nagata type conjecture. Commun. Anal. Geom. 25, 125–161 (2017)

Favre, C., Jonsson, M.: The Valuative Tree. Lecture Notes in Mathematics, vol. 1853. Springer, Berlin (2004)

Favre, C., Jonsson, M.: Eigenvaluations. Ann. Sci. Éc. Norm. Sup. 40, 309–349 (2007)

Favre, C., Jonsson, M.: Dynamical compactifications of $$\mathbb{C}^2$$. Ann. Math. 173, 211–248 (2011)

Fulton, W.: Introduction to Toric Varieties. Annals of Mathematics Studies, vol. 131. Princeton University Press, Princeton (1993)

Galindo, C., Monserrat, F.: The cone of curves and the Cox ring of rational surfaces given by divisorial valuations. Adv. Math. 290, 1040–1061 (2016)

Galindo, C., Monserrat, F., Moyano-Fernández, J.: Minimal plane valuations. J. Algebraic Geom. 27, 751–783 (2018)

Galindo, C., Monserrat, F., Moyano-Fernández, J., Nickel, M.: Newton-Okounkov bodies of exceptional curve valuations. arXiv:1705.03948 (2017)

Greco, S., Kiyek, K.: General elements of complete ideals and valuations centered at a two-dimensional regular local ring. In: Christensen, C., Sathaye, A., Sundaram, G., Bajaj, C. (eds.) Algebra, Arithmetic and Geometry with Applications (West Lafayette, IN, 2000), pp. 381–455. Springer, Berlin (2004)

Hartshorne, R.: Algebraic Geometry. Graduate Texts in Mathematics, vol. 52. Springer, New York (1977)

Iitaka, S.: On $$D$$-dimensions of algebraic varieties. J. Math. Soc. Jpn. 23, 356–373 (1971)

Jonsson, M.: Dynamics on Berkovich Spaces in Low Dimensions. Springer, Berlin (2015)

Kaveh, K., Khovanskii, A.: Newton–Okounkov bodies, semigroups of integral points, graded algebras and intersection theory. Ann. Math. 176, 925–978 (2012)

Kollar, J., Mori, S.: Birational Geometry of Algebraic Varieties. Cambridge Tracts in Mathematics, vol. 134. Cambridge University Press, Cambridge (1998)

Moe, T.K.: Cuspidal curves on Hirzebruch surfaces. PhD thesis, Department of Mathematics, University of Oslo. https://www.duo.uio.no/handle/10852/37197 (2013). Accessed 23 Nov 2018

Mondal, P.: How to determine the sign of a valuation on $$\mathbb{C}[x, y]$$. Mich. Math. J. 66, 227–244 (2017)

Okounkov, A.: Why would multiplicities be log-concave? In: Duval, C., Ovsienko, V., Guieu, L. (eds.) The Orbit Method in Geometry and Physics (Marseille, 2000). Progress in Mathematics, vol. 213. Birkhäuser, Boston (2003)

Reid, M.: Chapters on algebraic surfaces. In: Kollár, J. (ed.) Complex Algebraic Geometry (Park city, UT, 1993). IAS/Park City Lecture Notes Series, vol. 3, pp. 3–159. American Mathematical Society, Providence (1997)

Spivakovsky, M.: Valuations in function fields of surfaces. Am. J. Math. 112, 107–156 (1990)

Teissier, B.: Valuations, deformations, and toric geometry. In: Kuhlmann, F.-Z., Kuhlmann, S., Marshall, M. (eds.) Valuation Theory and Its Applications, II (Saskatoon, SK, 1999). Fields Institute Communications, vol. 333. American Mathematical Society, Providence (1999)

Zariski, O., Samuel, P.: Commutative Algebra II. Vol. II. Graduate Texts in Mathematics, vol. 29. Springer, Berlin (1975)

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem